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Abstract—For quantitative assessment of close proximity and 

collision risks of drones and urban air mobility there is a need for 

simulation approaches that can represent a variety of operations 

and types of uncertainty and hazards that can affect them. This 

paper shows that agent-based modelling in combination with 

Interacting Particle System (IPS) Monte Carlo (MC) simulation 

and risk decomposition for global failure conditions can be 

effectively used for assessment of small probabilities of close 

proximity and collision events. It is demonstrated for a use case 

with drone and air taxi traffic simulations in an urban area south 

of Paris. 
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I. INTRODUCTION

Assuring safe integration of unmanned aircraft (UA) in all 

airspace classes, including urban areas, is an important element 

of current research and development (R&D) in air traffic 

management (ATM). A central element in the European 

development is U-space [1], which is a set of new services and 

specific procedures designed to support safe, efficient and secure 

access to airspace for large numbers of unmanned aircraft 

systems (UASs). These services rely on a high level of 

digitalisation and automation of functions, whether they are on 

board the drone itself, or are part of the ground-based 

environment. A comprehensive overview of SESAR exploratory 

research projects on U-space is provided in [2] and a key result 

is the U-space concept of operations [3].  

In ATM changes of operations typically have been achieved 

in a step-by-step approach and safety risk assessments of such 

changes have often for a large part relied on safety occurrence 

data and expert feedback from operators. In UAS traffic 

management (UTM), drone operations and urban air mobility 

(UAM) involve drastically new types of aircraft, automation and 

supporting systems, roles of human operators, and procedures. 

The lack of experience by operators and the lack of data on 

safety occurrences imply that safety risk assessment methods 

that largely depend on expert judgement and safety occurrence 

data will be limited in achieving valid risk assessment results for 

such new operations. As a way forward it is recognized in the 

R&D agenda “Digital European Sky” [4] that for safety 

assurance of U-Space and UAM: “New safety modelling and 

assessment methodologies applicable to U-space are needed. 

Tools are required to analyse and quantify the level of safety of 

U-space operations involving high levels of automation and

autonomy, where multiple actors automatically make complex,

interrelated decisions under uncertainty.”

Safety risk assessment of new concepts and technologies 

needs to assess (1) how effective the new concepts and 

technologies are if they work as intended, as well as (2) what 

risks are induced if elements in the new concepts and 

technologies are failing. In the SESAR Safety Reference 

Material for assessment of changes in ATM [5, 6] these two 

perspective are referred to as success approach and failure 

approach, respectively. For new UAS/UAM and U-space 

supported operations this means that two types of questions need 

to be answered for the safety assessment: 

• When systems are working as intended in normal

conditions. What is the effectiveness of detect-and-avoid

(DAA) systems and how can they be tuned optimally? What

is the impact of traffic density and airspace design? What is

the impact of normal sensor errors? What is the impact of

normal communication delays? What is the impact of

normal human reaction times? What is the impact of normal

variability in speeds of operations? What is the impact of

normal weather variability? Etc.

• When there are failures or off-nominal conditions. What is

the impact of failures of technical systems, including drone

propulsion, communication systems, surveillance systems,

navigation systems, DAA systems? What is the

effectiveness of mitigating measures for failure conditions?

What is the impact of human errors, such as errors in

planning and reaction to DAA advisories? What is the

impact of unpredicted adverse weather conditions? Etc.

Answering these types of questions in quantitative safety risk

assessment of UAS/UAM operations requires modelling and 
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simulation approaches that can represent the systems, human 

operators and environment of relevant operational concepts. The 

models should represent the performance and uncertainty of 

normal operations, as well as the impact of off-nominal/failure 

conditions that may affect the operations. The simulations 

should effectively represent the interactions of all entities and 

their variability in normal and off-nominal/failure conditions, 

such that probabilities of rare safety events can be estimated in 

reasonable time.  

In previous research it has been shown that agent-based 

dynamic risk modelling for safety risk assessment in ATM is an 

effective method to assess the risk of complex and novel 

operations [7]. Such models represent the dynamics and 

stochastic variability of operations involving complex 

interactions of technical systems, human operators and 

environmental conditions, both in normal conditions and in off-

nominal/failure conditions. The models are used in rare event 

Monte Carlo (MC) simulation approaches to assess low 

probabilities of safety events. Agent-based dynamic risk 

modelling is included in the SESAR Safety Reference Material 

[5, 6] and it has been effectively used in various applications, 

including runway incursions, airborne self-separation, 

separation minima of conventional operations, ACAS 

evaluation, and others [8-11]. 

In this paper we show that agent-based dynamic risk 

modelling and rare event MC simulation methods can be 

effectively used for assessment of small probabilities of close 

proximity and collision events of UAS/UAM operations. Next, 

Section II explains the scope of the study, Section III presents 

the development of the agent-based models for the operations, 

Section IV describes the rare event MC simulation approaches, 

Section V presents illustrative simulation results, and Section VI 

discusses the implications of this study. 

II. SCOPING 

A. Concept of Operation 

In this study an urban area (24 x 16 km) south of Paris has 

been used, which includes vertical take-off and landing (VTOL) 

air taxi operations between suburbs, surveillance & loitering 

VTOL drones, and en-route drones that cross the area at a 

constant altitude. In the following, often the term ‘drone’ is used 

for each aircraft without an onboard pilot, including air taxis. 

Three airspace design options have been included: (1) free flight, 

where all operations use the same airspace; (2) mission-

dependent altitude layers, where there are dedicated altitude 

layers for the en-route parts of the various types of operations; 

(3) mission and heading-dependent altitude layers, where the 

dedicated altitude layers depend on the type of operation and the 

direction. 

All operations are controlled by pilots-in-command (PICs), 

who reside in remote pilot stations (RPSs). The PIC sets 

horizontal and vertical speeds and accelerations for the 

operations. A command-and-control (C2) link system is used to 

send mission control data to the drones and to receive flight data 

from the drones. Navigation data is based on a global navigation 

satellite system (GNSS) and a pressure altimetry system. 

Surveillance data is based on transmission of automatic 

dependent surveillance broadcast (ADS-B) data to/from other 

drones. Each drone has a DAA system, which uses ownship 

navigation data and othership surveillance data to provide alerts 

and guidance to remain well clear of other drones. DAA alerts 

and guidance are downlinked to the PIC and changes in mission 

control in response to DAA alerts and guidance can be attained 

by the PIC only.  

A number of aspects have been kept out of the scope. There 

is no strategic deconfliction of flights. There is no tactical 

conflict resolution. There is no capacity management. There is 

no geofencing of particular areas. There are no automatic 

responses to DAA advisories. There is no manned aviation or 

interfacing with air traffic control. 

B. Risk Types, Normal Variability and Failure Modes 

Drone operations pose various types of safety risk, including 

mid-air collision risk with regard to other drones or manned 

aviation, and ground risk with regard to people, animals, 

buildings, infrastructure, etc. on the ground. The scope of this 

study is on the risk of close proximity and mid-air collisions of 

drones with other drones.  

As explained in Section I, safety assessment of drone 

operations requires to account for normal variability and 

uncertainty in operations, as well as for off-nominal/failure 

conditions. The first category refers to variability/uncertainty 

that exists in every operation, such as normal errors in GNSS-

based position estimates, delays in C2 link transmission, delays 

in response to DAA alerts by a PIC, and variations in speeds and 

accelerations. The second category refers to failure/off-nominal 

conditions that may occur during an operation, such as engines 

failure, C2 link system not working, or PIC not responding to 

DAA alerts. Such failure conditions typically have low 

occurrence frequencies and may exist for particular (random) 

durations. They can be distinguished in local failure conditions 

affecting a single flight, e.g. a failure of a C2 link system in a 

drone, and global failure conditions affecting multiple flights, 

e.g. a failure of C2 link ground infrastructure in a region.  

Traditionally in safety assessments there has been most focus 

on the implications of failure modes. In the agent-based dynamic 

risk modelling approach followed in this study, the implications 

of normal variability/uncertainty and (local/global) failure 

conditions are assessed in union. This allows to evaluate the 

normal performance of operations, as well as the implications of 

particular failure conditions in combination with otherwise 

normal variability in operations.  

Types of normal variability/uncertainty that have been 

included in the scope of this study consider variation in wind 

speed; normal errors in altitude and vertical speed measurement; 

normal errors in GNSS-based horizontal position and speed 

estimates; delays in ADS-B transmission (between drones); 

delay in C2 link transmission (with RPS); delays in response to 

DAA alert by PIC; variable rates of turn and climb/descent by 

PIC in DAA response; variable rates of climb, descent, turn, 
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acceleration, deceleration, cruise speed during nominal flight; 

and variation in locations and timing of customer demand.  

Types of off-nominal/failure modes in the scope of this study 

are adverse weather not predicted; wrong altitude in flight 

planning; engines failure; reduced accuracy of pressure 

altimetry; GNSS-based estimation is not working (aircraft 

system or in whole region); reduced accuracy of GNSS-based 

estimation (single aircraft or whole region); C2 link not working 

(aircraft system, RPS, or whole region); ADS-B system of 

aircraft is not working; DAA system of aircraft is not working; 

and no/limited response to DAA alert by PIC.  

III. AGENT-BASED MODELLING 

A. Overview of the Agent-based Model 

A high-level overview of the agent-based model is provided 

in Figure 1. It shows a number of unmanned aircraft that reside 

in a particular environment and airspace design. The UA 

movements are influenced by weather conditions and weather is 

being forecasted by meteorological services. There are 

customers who pose demand for drone missions. UA operators 

develop flight plans based on the mission demand, weather 

forecast and airspace layout. The flight plans are used by PICs 

as a basis to control the drone missions. The mission control 

commands by each PIC are uplinked by the C2 link to the flight 

management system (FMS) of the UA and this determines the 

flight performance (movements of the drone). The FMS also 

uses ownship state estimation data, consisting of GNSS-based 

position and speed estimates and pressure altimetry. This 

ownship data is shared with other UAs via ADS-B. The ownship 

and othership states data are used by the DAA system on board 

of each UA to generate alerts and guidance advisories. The DAA 

output is downlinked by C2 link and shown on the traffic display 

in the RPS to the PIC. In response the PIC can adapt the mission 

to avoid close proximity to another drone. Details on the agents 

are provided next.  
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Figure 1: High-level overview of the agent-based model 

1) Weather and meteorological services 

The modelling of weather and meteorological services 

represents a constant and uniform wind that can be set and it 

includes a random possibility of an adverse weather condition in 

the region that is not predicted by the meteorological services. 

The consequence of adverse weather is that the drone trajectories 

exhibit oscillatory motion around a nominal flight path, thus 

representing turbulence.  

2) Customers 

The entity Customers represents the demand for services 

from the UA operators for the mission types. This demand 

determines the traffic density in the simulations. The demand for 

the missions is represented by Poisson processes with mission-

type dependent waiting times. It also determines mission-type 

dependent random departure and arrival positions in the urban 

areas or at the edges of flight zones.  

3) UA operator 

The UA operator performs the flight planning of the drone 

flights. The operator uses the airspace design (see Section II.A) 

and the customer demand as a basis for the flight planning. 

Flights are planned directly following the customer demand, 

there is no restriction in the number of available aircraft. The 

flight planning depends on the type of operation associated with 

the mission. For air taxi and en-route missions the shortest routes 

between start and end points are planned, while for surveillance 

& loitering missions a series of randomly chosen waypoints is 

used for manoeuvring within an urban area during a particular 

duration. The planning of flights sets a flight level that is 

between the altitude bounds of the airspace design for the type 

of operation considered. This can be done in two modes: (1) 

Middle, planned flight level is exactly in the middle of the 

altitude bounds; (2) Random, planned flight level is uniformly 

distributed between the altitude bounds. The operator can make 

an altitude planning error, which implies that a flight is planned 

at an altitude layer above or below the layer according to the 

airspace design. 

4) UA flight performance 

A number of aircraft types are defined, which are associated 

to the operation types (air taxi, surveillance & loitering, and en-

route UAS). The flight performance of the aircraft is specified, 

describing variables like position, heading, speed, and climb 

speed during manoeuvring. The input for the manoeuvring of the 

aircraft stems from the flight control system, which uses mission 

control settings for various flight phases. The flight performance 

model includes non-nominal modes for uncommanded motion 

of the drone in adverse weather and for engine failure.  

5) Flight management system 

The FMS of the aircraft contains the flight plan, ownship 

state estimates, received othership state estimates, output of the 

DAA system, and input from the PIC via the C2 link. This data 

is used for mission and flight control, as input of the DAA 

system, for ADS-B Out transmission to other aircraft, and to 

inform the PIC. The mission control system uses settings by the 

PIC to control the various flight phases of nominal operations 

and to change the trajectories in response to DAA alerts and 
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guidance. Furthermore the mission control system includes 

autonomous control modes for contingency plans in the case of 

a lost C2 link or in the case of lost GNSS ownship estimation. 

The mission control system sends commands to the flight 

control system for the control of heading, air speed and altitude. 

6) Ownship state estimation 

The ownship state estimation includes GNSS-based 

estimation of horizontal position and speed and pressure 

altimetry for estimates of the altitude and vertical speed. 

• The model for GNSS-based state estimation includes 

availability modes, representing working or not, and 

accuracy modes, representing the state estimation being in 

normal accuracy or reduced accuracy ranges. These modes 

are determined by modes at the GNSS receiver in each UA 

and modes representing the GNSS in the region. Errors in 

the position and speed estimates are chosen from Gaussian 

distributions with mode-dependent standard deviations.  

• A model for the pressure altimetry system is used, which 

includes modes for the altitude and vertical speed 

estimation in normal accuracy ranges and for reduced 

accuracy ranges. Altitude and vertical speed measurement 

errors are chosen from Gaussian distributions with mode-

dependent standard deviations.  

7) Othership state data 

Position and speed estimation data is exchanged with other 

UAs by ADS-B, thus providing the basis for dependent 

surveillance at each UAS. A model for the availability of the 

ADS-B system at each UAS is included, which represents the 

possibility of the system not being available. Transmission 

between a pair of UASs requires the ADS-B at both UASs to be 

working. The duration of ADS-B transmission is chosen from a 

uniform distribution. 

8) C2 link 

The C2 link is the logical connection used for the exchange 

of information between the PIC in the RPS and the UA. A model 

for the availability of the C2 link system represents the 

possibility of the system not being available. It consists of three 

components, representing availability of C2 link systems in the 

UA and RPS, and availability of the C2 link infrastructure in the 

whole region. The latter component represents a global failure 

mode, affecting all UAs in the region. If C2 link transmission is 

possible, durations for the uplink and the downlink of 

information are chosen from uniform distributions.   

9) DAA system 

In the scope of the agent-based model, the DAA system is 

the prime means for detecting conflicts and providing guidance 

and alerts for remaining well clear. In the current study, we have 

integrated DAIDALUS (Detect and Avoid Alerting Logic for 

Unmanned Systems), which has been developed by NASA as a 

DAA reference system [12]. DAIDALUS is a rule-based system 

that uses constant-velocity projections over a lookahead time to 

determine the level of threat of a well-clear volume and to 

compute horizontal and vertical guidance to remain or regain 

well-clear. Its parameters have been tuned for the various types 

of UAS operations in our study. Since DAIDALUS was not 

designed for VTOL operations, it has been deactivated during 

VTOL phases. Other UAS may however detect and avoid a UAS 

during its VTOL phases. 

10) Remote pilot station 

The Remote Pilot Station receives aircraft data and DAA 

data via the C2 Link and shows this data to the PIC by traffic 

display and alerting. 

11) Pilot in command 

The PIC is the agent who sets the control of the various types 

of aircraft operations in nominal conditions and who is informed 

by the DAA system about conflicting aircraft and guidance to 

avoid close encounters. The situation awareness model of the 

PIC includes information of the ownship for nominal flight 

control actions, such as the flight plan, airspeed, altitude and 

heading, as well as the downlinked DAA data. Based on the 

situation awareness components, the PIC implements actions in 

response to the DAA alert and guidance information. PIC action 

models include: (1) PIC response mode, describing probabilities 

of response to horizontal and vertical guidance; (2) delay in the 

response to DAA alert and guidance information, chosen from a 

log-normal distribution; and (3) PIC mission control actions, 

which describe the manoeuvring to selected directions/altitudes 

and returning back to the planned trajectory if there is no DAA 

alert remaining. 

B. Modelling of Nominal and Off-nominal conditions 

For simulation-based safety risk assessment of operations it 

is needed to represent variability in performance both in nominal 

conditions and in off-nominal conditions. For this purpose the 

agent-based model includes a range of discrete states that 

describe nominal and off-nominal modes that influence 

particular characteristics of system performance. The system 

performance at a particular aircraft i may be influenced by local 

systems at the aircraft as well as by global systems outside of the 

aircraft (which also influence systems of other aircraft). 
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Figure 2. Schematic diagram of Working and Failing modes of 

local and global system characteristics A and B influencing system 

performance of aircraft i. D1 to D8 are transitions with exponentially 

distributed delays. 
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A schematic diagram of these elements of an agent-based 

model is shown in Figure 2. It shows two characteristics for local 

and global systems, which all have a nominal mode Working 

and an off-nominal mode Failing. Transitions between the 

modes are via delay gates, where the delays are chosen from 

exponential distributions. For instance, this model structure can 

describe the performance of GNSS-based state estimation at an 

aircraft. Here, characteristic A may represent availability for a 

local system (GNSS receiver at aircraft i) and for a global system 

(GNSS performance in the region). Both the local and the global 

systems need to be in the Working mode for GNSS-based state 

estimation at aircraft i. Lack of GNSS-based state estimation 

implies that position estimates are not available for navigation 

and surveillance functions. Characteristic B in Figure 2 may 

represent the level of accuracy of GNSS-based state estimation 

as achieved by the local and global systems. Here the Working 

mode may represent a normal accuracy level, where state 

estimates are affected by normal errors, and the Failure mode 

may represent a reduced accuracy mode with enlarged errors in 

the state estimates. The achieved accuracy affects the navigation 

and surveillance performance of the affected aircraft. 

IV. RARE EVENT MONTE CARLO SIMULATION 

Straightforward MC simulation of the dynamic and 

stochastic behaviour of the interacting agents only allows to 

assess probabilities of close proximities and collisions up to a 

certain level in a given time. In this study we use two techniques 

to accelerate the MC simulation: Interacting Particle System 

(IPS) method and risk decomposition for global failures. 

A. IPS MC simulation 

In [11, 13] acceleration of MC simulation has been achieved 

for air traffic scenarios using the IPS method of [14]. It makes 

use of a series of decreasing miss distances

1  (c 1 )c cd d M+  = . Each miss distance cd is composed 

of a horizontal miss distance (HMD) and a vertical miss distance 

(VMD). In IPS MC simulation, N runs of the agent-based 

model are conducted over a finite time interval in M miss 

distance cycles plus an additional collision cycle.  

Next we explain key features of the IPS approach for two 

miss distance cycles and a collision cycle as illustrated in Figure 

3. Here a circle represents a simulation object or particle, which 

describes the simulation of the complete agent-based model (the 

total state space of all flights, systems, humans). In each cycle,

N particles are simulated. In miss distance cycle c , the 

simulation of a particle is ended either if it has reached a 

simulation end timeT (green circles in Figure 3), or if the miss 

distance boundary cd has been reached by a pair of aircraft 

(circles ending on miss distance line in Figure 3). We denote the 

number of particles that have hit boundary cd as
h

cN and the 

associated fraction of particles as /h

c cN N = . If no particle 

has hit cd (i.e. if 0h

cN = ) then the MC IPS simulation stops at 

that boundary. The particles that have hit a miss distance 

boundary are stored.  

At the start of each following cycle, resampling of the stored 

particles is used (illustrated by copying of particles in Figure 3). 

This means that the complete state space is copied, including all 

continuous states (e.g. aircraft positions and speeds, surveillance 

estimates, flight plans) and all discrete states (e.g. system modes, 

weather conditions, failure conditions). Next the simulation of 

each particle is continued independently, including its unique 

stochastic variations as defined in the agent-based model.  

In the last simulation cycle (collision cycle), the simulation 

of each particle is proceeded until the simulation end timeT . 

Here all collisions between aircraft pairs are counted as
collN . 

Following a collision, the involved aircraft are removed from a 

particle, since the consequences of collision and potential 

ground impact are out of the scope of this study. 
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Figure 3. Illustration of IPS MC simulation for estimation of rare 

miss distances and collisions 

Based on the IPS MC simulation results, the probability that 

any aircraft pair reaches a miss distance boundary cd in the time 

frame (0, )T is estimated as 

 

1

( )
c

c k

k

P d 
=

=  

and the expected number of aircraft pair collisions in the time 

frame (0, )T is estimated as 

 

1

coll M
coll

k

k

N
m

N


=

=  . 

By accounting for the number of flights and flight hours, 

above statistics can be extended to risk estimates per flight and 

per flight hour, as is customary in aviation. In this scheme setting
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0M = implies that no miss distance cycles are used, such that 

ordinary MC simulation for collision events remains. 

B. Risk decomposition for global failure conditions 

Risk decomposition for global failure conditions supports 

the assessment of rare global failures that would be encountered 

only very seldomly in IPS MC runs. For each global condition a 

simulation setting is defined as Working, Failing, or Stochastic. 

• If the simulation mode is set as Working then the related 

system mode in the agent-based model is set as Working 

during a total simulation run. This is used to evaluate the 

conditional risk given that the mode is in the nominal 

condition. 

• If the simulation mode is set as Failing then the related 

system mode in the agent-based model is switched from 

working to failing at a random time during a simulation run. 

Next, Bernoulli sampling is used to switch back from failing 

to working after a mean time of the global failure mode. 

This scheme is used to evaluate the conditional risk given 

that the mode is in the failure condition during a simulation 

run. 

• If the simulation mode is set as Stochastic then the system 

mode in the agent-based model is updated at each time step 

in the simulations according to Bernoulli sampling. As such 

in this simulation mode no risk decomposition is used, but 

rather the system mode is switched between working and 

failing. This simulation mode can be used if the failure 

mode occurs sufficiently often. 

In the simulations with risk decomposition, IPS MC 

simulation is performed for all possible combinations of 

working and failing global modes. For instance, a risk 

decomposition for two conditions leads to conditional risks for 

four cases (Working-Working, Working-Failing, Failing-

Working, and Failing-Failing), which are multiplied with the 

probability of each case, and next the risk contributions of the 

four cases are summed to attain the overall risk.  

C. D(emo)-CRAT 

Based on above agent-based models and rare event MC 

simulation approaches a software tool was developed in C++, 

called D(emo)-CRAT (Demonstrator Drone Collision Risk 

Assessment Tool) [15]. This tool allows to configure all 

parameters of the agent-based model (224 parameters in case of 

3 urban areas, including 58 for DAIDALUS), to configure the 

MC simulations (12 parameters in case of 3 miss distance 

boundaries), to run the MC simulations on multiple threads, and 

to visualize statistics of close proximity and collision events 

obtained by the MC simulations.  

V. ILLUSTRATIVE SIMULATION RESULTS 

Next some illustrative MC simulation results are shown for 

a use case in an urban area south of Paris. A broader set of results 

is available in [15]. 

A. Impact of DAA for Air Taxi Operations 

Figure 4 shows the locations of close proximity events 

(HMD≤50m, VMD≤15m) for air taxi operations between Orsay 

and Brétigny-sur-Orge flying at random levels between 400 and 

2000 ft, with a mean time between the flights of 600 s. The 

duration of each simulated period is 12 hours and 1000 

simulation particles are used. This implies that the total number 

of expected flights in the simulation is 72,000. Without DAA, 

the traffic leads to a close proximity probability of P=6.7e-3 per 

flight or P=2.2e-2 per flight-hour. With DAA, the close 

proximity probability is reduced by a factor 4.5 to P=1.5e-3 per 

flight or P=4.8e-3 per flight-hour. It can be recognised in the 

bottom pane of Figure 4 that in this simulation all of the 

remaining close proximity events are in the urban areas. Several 

factors contribute to this phenomenon: (1) during VTOL the 

DAA system is not active, since it was not designed for VTOL 

operations; (2) aircraft approaching an urban area can suddenly 

encounter air taxies that are in VTOL without sufficient time to 

react; (3) air taxies may use nearby arrival or departure positions 

and thus come in close proximity. 

 

 

Figure 4: Close proximity events (HMD≤50m, VMD≤15m) for air 

taxi operations between Orsay and Brétigny-sur-Orge. Top figure: 

without DAA. Bottom figure: with DAA. 
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B. IPS Cycles 

Figure 5 illustrate results of an IPS MC simulation for a 

scenario with air taxi operations between Orsay and Brétigny-

sur-Orge with a mean time between flights of 600 s. The 

duration of each simulated period is 12 hours and 5000 

simulation particles are used, implying a total of 360,000 flights. 

Four IPS cycle were used with the following limits: 

• Cycle 1: HMD≤100m, VMD≤30m, 

• Cycle 2: HMD≤50m, VMD≤15m, 

• Cycle 3: HMD≤25m, VMD≤10m, 

• Cycle 4: Collision, implying HMD≤11.3m, VMD≤2.5m 

being the size of the air taxi. 

Figure 5 shows the decrease in event probability over these 

cycles. These probabilities decrease effectively from 1.0e-2 to 

1.0e-4 events per flight.  

Figure 5: Probabilities of close proximity and collision events in 

four subsequent IPS cycles 

C. PIC Response to DAA 

The performance of the PIC in responding to the downlinked 

DAA advisories is an important factor in the effectiveness of the 

joint cognitive system consisting of the DAA system and the 

PIC. The model of the PIC performance includes models for the 

delay in response and for the response mode. The response delay 

is chosen from a lognormal distribution. For a sensitivity 

analysis two settings are used: 

• Slow: mean delay is 9 s and standard deviation is 3 s (in line 

with human-in-the-loop simulations of [16]); 

• Quick: mean delay is 3 s and standard deviation is 1 s. 

The response mode distinguishes between a mode where the PIC 

responds and a mode where the PIC does not respond to a DAA 

advisory. Given that the PIC responds, there can be three types 

of PIC response, which are studied in a sensitivity analysis: 

• Altitude Response: The PIC responds to DAA altitude 

guidance only; 

• Direction Response: The PIC responds to DAA direction 

guidance only; 

• Both: The PIC responds both to direction and altitude 

guidance. 

Figure 6 shows risk reduction factors for close proximity 

events (HMD≤50m, VMD≤15m) for the PIC response options 

in UAS en-route crossing operations at an altitude of 2500 ft and 

mean time between the flights of 900 s. The risk reduction factor 

is the close proximity probability for a scenario without DAA 

divided by the close proximity probability for a scenario with 

DAA and a PIC response option. It follows that the largest risk 

reduction is attained if the PIC responds both to the direction and 

altitude guidance with a small delay. If the PIC would only 

respond to one of the guidance dimensions, it is more effective 

to only change altitude than to only change direction. 

 

Figure 6: Close proximity risk reduction factors for types of PIC responses 
to DAA advisories in UAS en-route crossing operations: altitude response only, 

direction response only, both altitude & direction response, slow and quick 

response. 

VI. DISCUSSION 

UAS/UAM operations involve many interacting systems, 

humans and environmental conditions, including various types 

of drones and operations, various communication, navigation 

and surveillance systems, both air- and ground-based, various 

levels of automation, various levels of human interactions and 

oversight, and diverse operating environments. The 

performance, resilience and safety of such complex 

sociotechnical systems depend on their dynamic 

interdependencies and their performance variability both in 

normal conditions (e.g. sensor errors, human reaction time, 

normal weather) and in off-nominal/failure conditions (system 

failures, human errors, adverse weather). UAS/UAM operations 

are based on radically new operational concepts for which there 

are no or only little data and experience. It has been rightly 

identified that there is a need for new modelling and assessment 

methods to analyse and quantify their safety [4]. 

In this paper we have shown that agent-based dynamic risk 

modelling and rare event MC simulation approaches can be 

effectively applied to quantify close proximity safety events of 

UAS/UAM operations up the level of collision. The models 

describe various types of operations, airspace designs, customer 

demand, navigation and dependent surveillance systems, C2 link 

systems, and PIC behaviour, and they have an interface with the 

reference DAA system DAIDALUS. The models describe 

dynamics and stochastic variability of the agents in normal 

conditions as well as in off-nominal/failure conditions, which 

can affect the performance of a single agent (local system) or 

many associated agents (for a global system). 
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The objective of this study has been to demonstrate the risk 

assessment methods for UAS/UAM operations and the scope 

has been limited on purpose. Examples of possible extensions of 

the scope are: strategic deconfliction of flight plans (thus 

avoiding peculiar conflicts); tactical conflict resolution by 

UTM; interaction between UTM and ATM; geofencing systems. 

This study focused on assessment of the risk of close proximities 

and collisions between drones. The scope may be extended to 

other types of risks, such as ground risk, airspace infringement 

risk, and collision risk with manned aircraft. Also other (e.g. 

flight-efficiency) indicators may be employed such that the 

agent-based modelling can be used for studying resilience of 

drone operations for performance variability in nominal and off-

nominal conditions. Other DAA systems may be incorporated, 

such as ACAS sXu that is being developed for small UAS with 

hovering functionalities [17]. If the scope is broadened, related 

agent-based models would have to be extended, e.g. 

incorporating more complex routes, geospatial models of 

buildings and obstacles, or population density models.  

A limited number of illustrative simulation results have been 

provided in this paper (chosen from a broader set in [15]), mostly 

showing the impact on close proximity events by the DAA 

system and by the type of PIC response. These types of results 

provide valuable insights in the safety of the UAS/UAM 

operations, but clearly the particular quantitative results depend 

on the scope (e.g. excluding strategic deconfliction), on the 

modelling assumptions, and on the large set of parameter values 

in the agent-based model. In a quantitative safety assessment of 

a particular operational concept, appropriate choices have to be 

made for all these aspects. Nevertheless, at this stage of the 

development of UAS and UAM concepts, the most important 

contribution of the agent-based dynamic risk modelling is to 

provide structured understanding in the safety impact of 

different choices and settings in a range of operational concepts. 

Comparison of simulation results for different scopes and 

sensitivity analysis for variations in parameter settings provide 

such safety feedback to design and they can provide a basis for 

the development of operational performance standards.  

In conclusion, this paper has shown that agent-based 

dynamic risk modelling and rare-event Monte Carlo simulation 

are effective methods for quantifying and analysing levels of 

safety of UAS and UAM operations. We expect that application 

and continued development of the models and the D(emo)-

CRAT software tool can effectively support understanding and 

improving the safety of this new era of air transport. 
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