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Abstract—This paper explores an integrated approach for
improved sensing and positioning with applications in air traffic
management (ATM) and in the Advanced Surface Movement
Guidance & Control System (A-SMGCS). The integrated ap-
proach includes the synergy of 3D Vector Antenna with the
novel time-of-arrival and angle-of-arrival estimate methods for
accurate positioning, combining the sensing on the sub-6 GHz and
mmWave spectrum for the enhanced non-cooperative surveil-
lance. For the positioning scope, both uplink and downlink
5G reference signals are investigated and their performance is
evaluated. For the non-cooperative sensing scope, a novel 5G-
signal-based imaging function is proposed and verified with
realistic airport radio-propagation modelling and the AI-based
targets tracking-and-motion recognition are investigated. The
5G-based imaging and mmWave radar based detection can be
potentially fused to enhance surveillance in the airport. The work
is being done within the European-funded project NewSense and
it delves into the 5G, Vector Antennas, and mmWave capabilities
for future ATM solutions.

Keywords—5G, Angle of Arrival, Air Traffic Management,
Communications, Millimetre Wave, Positioning, Sensing, Surveil-
lance, Time of Arrival, Vector Antenna, Synthetic-aperture Radar

I. INTRODUCTION AND MOTIVATION

Innovative technologies - not traditionally specific to Air
Traffic Management (ATM) domain - are of increasing interest
in order to support, in a sustainable and efficient way, the
various Communication, Navigation, and Surveillance (CNS)
requirements in airport areas. Tracking solutions based on
timing and angle measurements from 5G radio frequency
(RF) signals, mmWave radar, and 5G RF-based radar (i.e.
using 5G signals for radar/sensing purposes) have not been
addressed so far in the ATM context to the best of the
Authors’ knowledge. Yet, there is a significant technological
convergence opportunity of future ATM with communication
and navigation solutions based on terrestrial 5G networks.
The 5G current spectrum lies around 3.5 GHz and future 5G
and 6G systems will also operate in mmWave bands (near 26
GHz and above 60GHz), falling outside the current aviation
spectrum, and therefore having the promise of low interference
with existing ATM signals and of enabling complementary
solutions to those currently existing in ATM. The anticipation

of large-scale deployment of 5G networks will allow detection
of all sorts of objects in the airport area including unmanned
aerial vehicles (UAV) and will also enable accurate positioning
of terrestrial and UAV targets, by taking advantage of the
richness of reference signals available nowadays in 5G systems
[1]–[4]. Radar solutions based on mmWave, widely used for
automotive industry, having compact size including antennae,
with very competitive cost compared to traditional radars, and
providing reliable performance, could also be used to track
and classify [5] non-cooperative targets at airport surface.

Most of the world’s large airports nowadays are already
deploying Advanced Surface Movement Guidance and Control
System (A-SMGCS) surveillance service, implementing mul-
tilateration (MLAT) technologies, alongside with traditional
surface movement radar (SMR). However, the situation for
small and medium-sized airports is quite different: on one
hand, the air traffic growth puts the secondary airfields under
pressure for greater capacity and increased safety, but on
the other hand, the current surface surveillance technologies
remain out of their reach because of prohibitive infrastructure
costs [6]. Being able to re-use existing infrastructure, such as
the 5G networks - expected to be widely deployed worldwide-
and the mmwave radar used for automotive and industrial
applications, would help towards providing technically and
financially viable solutions for surveillance service for small
and secondary airports. Thus we propose a collaborative
approach for the small and medium-sized airports surveillance
as illustrated in Fig1. This concept relies on innovative and
low-cost surveillance solutions developed outside the ATM
Surveillance Industry, for example 5G-signals-based solutions.
We rely on the assumption that large-scale 5G deployments
will be available worldwide in the next decades, with in-
dependent private 5G networks available at airports and 5G
equipment on-board of aircraft.

By taking advantage of the pre-defined uplink (UL) sound-
ing reference signal (SRS), downlink (DL) channel status
information reference signal (CSI-RS), and DL positioning ref-
erence signal (PRS), the joint angle-delay estimation methods
[7], [8] can be applied with the array receiver to localize the
5G user equipments (UEs) in UL and 5G base stations (called
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Figure 1. Illustration of the integrated-concept architecture for airport surveillance

gNBs) in DL. Besides the positioning via the reception of
the direct transmitted 5G signal, we also exploit the echos
of the reference signals for the imaging sensing purpose by
mono-static Synthetic-aperture radar (SAR), in UL scenario
and bi-static SAR in DL scenario.

Under the 5G framework, 3D vector antenna (3D-VA) and
mmWave radar are also adopted to enhance the positioning and
sensing functions needed in the ATM and airport surveillance.
The combination of the 3D-VA and 5G signal will lead to the
improved angle resolution because of the polarization differ-
entiation capability brought by orthogonal electric-magnetic
reception from the three axes of a 3D-VA. The fusion of
the targets in the 5G-signal-based imaging and mmWave-radar
detection enhances the target detection and recognition in the
surveillance scenarios. The integration of the 5G reference
signal, 3D-VA, and mmWave radar in this work is tackled
from the following three points of view:

• Single-cell UE Positioning: Joint delay and angle localiza-
tion approaches are proposed for single 5G gNB scenario.
Estimation methods utilise SRS or PRS transmitted between
the UE and gNB, and receivers are equipped with VA and
URA;

• VA Array enhanced angle estimation performance:
Leveraging the antenna array to compose 3D-VA array to
estimate the UE’s angle from SRS transmitted from flight
to the gNB;

• Joint positioning and identification: Taking the advantage
of the unique reference sequence allocated to individual 5G
UE in the network, the 5G signal based solution provides
the location naturally together with the identification in-
formation without support from auxiliary system. This fact
potentially leads to a economic ATM/ATC solution for the
futue secondary airports.

• Complementary Sensing: The 5G-signal-based imaging
provides an opportunity to identify the non-cooperative
targets from the SAR images. The mmWave radar provides
more accurate position estimation and detailed motion status
than the sub-6GHz 5G-signal-based imaging/sensing. With a
proper target-association strategy, the detection and motion
recognition accuracy can be further improved by using
hybrid radio signal sources.

The enhanced positioning and complementary sensing func-
tions show promising potential to provide the economic solu-

tions for the future ATM and airport surveillance. EUROCAE
has defined performance requirements for Mode S Multilat-
eration (MLAT) Systems and SMR sensor systems for use
in A-SMGCS in ED-117 [9] and ED-116 [10] respectively.
As the sensors developed in the scope of current study (5G
reference signal combined with 3D-VA and mmWave radar)
come as alternatives to costly technologies stated before, they
will be assessed using the performance requirements as defined
in these standards when applicable. A preliminary requirement
analysis has been already defined in Deliverable 1.1 of the
NewSense [11], for example, Reported Position Accuracy is ≤
12 m (95%) for 5G surveillance sensors in the Manoeuvering
Area and it is ≤ 7.5 m (95%) for mmWave radar. According
the 5G standard, the positioning accuracy will need to achieve
3 to 10 m for 80% for outdoor scenarios in Release 16 [12],
further narrow down to 0.3 m and with 10 ms positioning
latency in Release 17 [13].

In the rest of this paper, we will introduce the working
principle of the 3D-VA in Section II; in Section III the 5G
reference signals, 3D-VA involved angle-delay estimation al-
gorithms, and the imaging algorithms are elaborated in detail;
the AI-based mmWave radar sensing and target recognition
are described in Section IV. In Section V, we provide the
preliminary results of the positioning, imaging, and target
recognition. At last, the conclusion and future work are given
in the Section VI.

II. DOA VIA 3D VECTOR ANTENNA

A. Vector antenna presentation

A theoretical vector antenna (VA) is composed of six
orthogonal and collocated antennas that combine three electric
and three magnetic elementary dipoles, as illustrated in Fig. 2
(a). These six dipoles allow the derivation of the Direction of
Arrival (DoA) from the measurement of the six components of
the kth incident Electromagnetic (EM) field in the Cartesian-
coordinate system, whatever the polarization state. Its DoA
is defined by the azimuth φk and elevation θk angles. The
main advantages of such a VA antenna are wider angular
coverage (theoretically the full 3D space) and compact size
(one wavelength).

B. Proposed vector antenna

The proposed VA is made of two vertical parts and one
horizontal part as illustrated in Fig. 2 (b). Each vertical part

2



x̂ component
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Figure 2. (a) Topology of a theoretical VA; (b) Photograph of the 8-port vector
antenna [14]

is orthogonal to each other and consists of a dual-port semi-
circular arrays of four Vivaldi antennas. The horizontal part
consists of a circular array of eight Vivaldi antennas with
four ports. Therefore, this VA has a total of eight ports: four
ports (ports numbers from 1 to 4) are associated with the
vertical part; and 4 ports (ports numbers from 5 to 8) are
associated with horizontal part. The vertical part enables the
measurement of three components of the vertically-polarized
incoming EM field (namely Ez , Hx , and Hy ) while the
horizontal part permits the measurement of the other three
components (namely Hz , Ex , and Ey ) of the horizontally-
polarized incoming EM field.

C. Observation model

For k EM-fields incident upon the VA, the voltage Y ∈
CM,1 received at time t on each M ports of the VA can be
written as follows

Y(t) = D(φ, θ, γ, η) · s(t) +N(t), (1)

where · is the dot-product function, D ∈ CM,k is the angle of
arrival (AoA) steering vector corresponding to the VA response
including the polarization vector p and the spatial transfer
function Fs.

D(φ, θ, η, γ) = Fs(φ, θ)p(η, γ) (2)

The polarization vector p is defined as the combination of
vertical (Pv) and horizontal (Ph) polarization states as follows

pk = sin (γk) e
jηkPv + cos (γk)Ph, (3)

where γk ∈ [0◦; 90◦] and ηk ∈ [−90◦; 90◦] refer to the auxil-
iary polarization angle and the polarization phase difference,
respectively.

Moreover, s ∈ CK,1 designates the signal vector associated
with the k incoming EM-fields at time t and N ∈ CM,1

denotes the additive white Gaussian noise. It is assumed
here that this noise is spatially invariant with zero-mean and
covariance matrix Rn = σ2

nI ∈ CM,M .
Then, for an ideal VA, Fs can be modeled by the matrix

describing ideal elementary dipoles without coupling.


cosφ cos θ − sinφ
sinφ cos θ cosφ
− sin θ 0
− sinφ − cosφ cos θ
cosφ − sinφ cos θ
0 − sinφ


For the proposed VA, the spatial transfer function is deduced
from EM simulation or measurement when the VA is illumi-
nated with each incoming EM wave defined by its direction
(φk, θk), its polarisation state (η, γ) at one frequency, where
φk ∈ [0◦; 360◦] and θk ∈ [0◦; 180◦].

III. SENSING & POSITIONING IN SUB-6GHZ BAND

A. Reference Signals in 5G

In 5G, a variety of reference signals are used for many
different purposes such as channel sounding, synchronization,
demodulation, etc. By using these signals, different UL and
DL positioning methods can be implemented in the location
server. In this work, three different reference signals frequently
used for positioning are investigated, namely: SRS for the UL
transmissions and CSI-RS and PRS for the DL transmissions.

1) SRS: This signal is the UL reference signal, periodically
transmitted from UE to gNB to enable UL channel sounding.
Zadoff-Chu sequences are applied to SRS resource elements,
due to their specific properties. SRS can be extended to support
better positioning. The duration in time can be extended up
to 12 OFDM symbols. In addition, comb size (KTC) of
an SRS can be increased up to 8. Therefore, more UEs
can be multiplexed [15]. Fig. 3 illustrates two possible SRS
configurations.
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Figure 3. Multiple SRSs multiplexed in the same time slot with different comb
size: a) KTC1=4, KTC2=2; b) KTC1=2, KTC2=4

2) CSI-RS: This DL-only reference signal is a signal gener-
ated by a length-31 pseudo-random sequence defined in 3GPP
TS 38.211 (section 5.2.1). For each configured CSI-RS, the
UE shall assume the reference signal sequence being mapped
to resources elements (k, l)p,m so that the UE can assume
a configured CSI-RS signal will not collide with any signal
configured for the device, such as demodulation reference
signals associated with DL transmissions [15].

3) PRS: is another DL reference signal specified in 3GPP
Release 16 to support DL positioning methods. Similarly with
CSI-RS, this DL-only reference signal is a signal generated
by a pseudo-random sequence. Different comb sizes (2,4,6,12)
can be configured to a PRS. Therefore, multiple base stations
may use the same time slots, but different sets of subcarriers
can be multiplexed without interference. In addition, PRS
signals can be muted according to a muting pattern known
by UE to avoid interference more effectively.
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SRS is used for UL positioning, while PRS and CSI-RS are
used for DL positioning in 5G.

B. Angle and Delay Estimation Methods

Let us assume that the received signal Y m(t) from the
mth UE experiences the propagation delay t with direction
parameters φ and θ; we assume also that the source is linear
polarised and transmitter is vertically placed, so γ and ζ equal
to 90◦ and 0◦ . Now, we have delay steering vector g(t) in
(4) and AoA steering vector D(φ, θ).

g(t) = [1, e−2jπf1t, e−2jπf2t, ..., e−2jπfn−1t] (4)

After modelling the steering vectors, they are used in
Subspace-based and Expectation–maximization (EM) methods
for positioning parameters estimation.

1) Subspace Method: It is based on the subspace algorithm
Multiple Signal Classification (MUSIC) [16]. This approach
firstly calculates the covariance matrix of the received signal
Y m(t) from the mth UE.

RYY = E[Ym(t)Ym(t)
∗
] (5)

where E[·] denotes expectation, [·]∗ means the conjugate
transpose. Then, it applies the eigenvalue decomposition to
get λλλ = [λ1, λ2, ..., λ6N ] (with ascending order) and eigen-
vector En = [e1, e2, ...e6N ]. By eliminating the K strongest
values from En , we can get the noise subspace En =
[e1, e2, ...e6N−K+1]. As we only estimate Line of Sight (LoS)
path, K = 1 in this work.

Then, the parameters corresponding to the peak value of
P(φ, θ, t) in (6), with brute force search, indicate the received
signal delay and AoA, respectively.

P(φ, θ, t) = A∗(φ,θ,t)A(φ,θ,t)
A∗(φ,θ,t)EnEn

∗A(φ,θ,γ,t)

A(φ, θ, t) = D(φ, θ)⊗ g(t)
(6)

where ⊗ is Kronecker product.
2) EM Method: This method follows the space-alternating

generalized expectation-maximization (SAGE) design in [8]. It
repeats Expectation step (E-step) and Maximization step (M-
step) to minimise the difference between the expected signal
and the observed signal. E-step firstly assumes some delay and
AoA parameter values to generate Ŷm(t) as (7) showed. We
the noise component N̂(t) equals to Ym(t) − Ŷm(t). Then,
M-step exhaustively searches L(φ, θ, t) in t, φ and θ three
dimensions as (8) expressed. Parameters which produce the
peak value of L(φ, θ, t) will be used in the next round E-step
to generate a new Ŷm(t) to compare with the observed signal
Ym(t). The iteration process will stop when the difference
between Ŷm(t) and Ym(t) is smaller than a predefined
convergence value ξ.

Ŷ(t) = D(φ, θ)s(t) + N̂(t)

N̂(t) = Y(t)− Ŷ(t)
(7)

L(φ, θ, t) = D∗(φ, θ)Ŷm(t)g∗(t) (8)
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BS 3
R3

R1

R2

UE

Figure 4. (a) Single Base Station Positioning Scenario; (b) Multi-Base Station
Positioning Scenario

C. Single and Multiple-Cell Approaches

In single base station case, joint ToA/AoA positioning
problem becomes an angle-of-arrival and delay-estimation
problem. Delay is the time difference between transmission
time and reception times. From the product of the delay with
propagation speed, the range (r) is calculated. As seen in
Fig. 4 (a), the position of UE is shown as the intersection
of the red line indicating the direction of the received signal
and green circle indicating the range. After estimating the
angle and range, where the location of UE (Xu, Yu, Zu)
can be calculated by sum the relative coordinates with BS’s
coordinate as (9) expressed.

Xu = XBS + r cos(θ) sin(φ)
Yu = YBS + r sin(θ) sin(φ)
Zu = ZBS + r cos(φ)

(9)

Using multiple base stations (BS) for ToA and AoA po-
sitioning may overcome some of the challenges encountered
in single BS positioning. In Fig. 4 (b), two additional base
stations build LoS communication with UE to complement
the single base-station situation from Fig. 4(a). The simplest
way to reduce the positioning error is to average coordinates
estimated from multiple BSs (or gNBs). Equation (10) shows
the averaging result of XBS1

u ,XBS2
u ,and XBS3

u from three
BSs.

Xaveraging
u = 1/3 ∗

∑3
i=1X

BS(i)
u

X
BS(i)
u = XGT

u +X
BS(i)
error

(10)

where XGT
u is the ground truth of UE’s coordinate in x-axis.

Measurement errors XBS(i)
error from multiple BSs are averaged

to reduce the high measurement error caused by a single BS.

D. 5G Signal Based Imaging

Besides using the reference signals for positioning purpose
to estimate angle and delays, one can also exploit the reflection
of the reference signal for sensing functionality. In this paper,
we elaborate an image-function based on UL SRS signal to
mimic the synthetic-aperture radar (SAR) mechanism. By us-
ing the UL SRS from the UE (e.g., airplane) as the illuminator,
a monostatic SAR system can be formed by collecting and
processing the reflected signals from ground objects such as
buildings and vehicles. Range-Doppler information carried by
the reflections from objects on the ground is directly linked
with the geometry of those targets, and the usage of 5G
reference signal enables us to achieve this function under 5G
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networks. In Fig. 5, we assume a moving aircraft is capable
of collecting echoes of SRS from the ground. The down
range and cross range are linked with propagation delay and
Doppler frequency shift. For the imaging purpose, we assume

z

y

SRS
signal

x
Down range Ground targets

echo

echo

echo

Sampling
location

Figure 5. An example of the airport surveillance scenario with 5G uplink SRS
signals.
the reflected signal is YRS ∈ Cn×K with n subcarriers and
K OFDM symbols. The delay and Doppler information of L
reflections can be written as follows:

Ci(vl) = e−2jπiTcpsym2vl/λ (11)

D(vl) = [1, e−2jπTsym2vl/(nλ), ..., e−2jπ(n−1)T2vl/(nλ)]
(12)

For every path l, Ci(vl) and D(vl) are Doppler shift notation
on ith symbol and all subcarriers. vl is the Doppler speed and
wavelength is λ. Duration of OFDM symbol and cyclic prefix
(CP) OFDM symbol are Tsym and Tcpsym, respectively. The
received ith reflected symbols is:

Yi
RS =

L∑
l=1

Ci(vl)D(vl)� gi(tl)�Xi
RS +Ni

RS (13)

Where Xi
RS is the frequency domain transmitted sequence.

For extracting Doppler information, M OFDM symbols are
collected to construct the data matrix YRS .

YRS = [Y1
RS

T
,Y2

RS
T
, ...,YM

RS

T
] (14)

We multiply the Yi
RS with X∗i

RS , conjugation of transmitted
signal, to get the matched filter output Hi

RS .

Hi
RS = X∗i

RS ×Yi
RS (15)

f(τ, v) = (g∗(τ)�D∗(v))HRSC
∗(v)

Hi
RS = [Hi

RS
T
,Hi

RS
T
, ...,Hi

RS
T
]

C(v) = [C1(v), C2(v), ..., CM (v)]T
(16)

After searching the peak value along speed v and delay τ two
dimensions in (16), we can generate the range Doppler plot
of the illuminated area. The visualized process can be seen in
Fig. 7.

IV. SENSING ON THE MMWAVE BAND

A. mmWave-Radar Overview

The mmWave radar relies on highly directional electro-
magnetic Frequency Modulated Continuous Waves (FMCW),
operating typically at 24GHz and 77−81GHz, and mitigating
environmental factors, as they are not affected by heat or

light [17]. They can be also tuned for short, long, and wide-
detection ranges to meet airport surface surveillance needs.
Fig. 6 illustrates the functional architecture of the FMCW
radar with multiples receiving antennae (Rx1, Rx2 ...RxN).
The FMCW radar emits a high-frequency signal called a chirp,
with a frequency that increases linearly with a certain slope
s during the measurement phase. Once the chirp is reflected
by an object on its path, the reflected chirp is received by the
receive antennae (e.g. Rx1). Then, for each Rx, the Rx and Tx
signals are mixed, to generate the Intermediate frequency (IF)
signal. This obtained signal is then filtered with a low-pass
filter to eliminate the high frequency components, to be next
digitized using the Analog to Digital Converter (ADC). ADC
samples are then processed to calculate target’s range, velocity
and angle through multiple calculations mainly based on Fast
Fourier Transform (FFT). Signals patterns can also be used to
recognize object type using AI classifier [5] [18] [19].

Figure 6. mmWave radar architecture with multiple Rx Antennae

B. Signal Processing Calculations

1) Range FFT Calculation: A first, the FFT calculation
applied directly on ADC data (resulting from each chirp)
results in a frequency spectrum (Fig. 15) that has separate
peaks. Each peak, at frequency fpeak, denotes the presence
of an object at a specific distance.

distance = fpeak
c

2× s
(17)

This calculation is named, 1D FFT processing (also named
range-FFT).s in (17) is frequency shift per unit of time. This
calculation is applied on every chirp.

Multiple objects equidistant from the radar, but with dif-
fering velocities relative to the radar, will have single peak
corresponding to the range. These equi-range objects which
have different velocities relative to the radar can be separated
using a Doppler-FFT named 2D FFT.

2) Doppler/Velocity FFT calculation: The range-FFT cor-
responding to each chirp will have peaks in the same location,
but with a different phase. The measured phase difference
corresponds to the moving velocity. The 2D (velocity) FFT
processing that takes as input the 1D FFT and performs FFT
to give a (range, velocity) matrix is illustrated in Fig. 7.

3) Angle FFT calculation: The 3D FFT processing for
direction of arrival (azimuth) estimation is used to map the
X-Y location of the object. The range-FFT and Doppler-FFT
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do not work when two objects with equidistant and same
velocity relative to the radar appear. Then the AoA needs
to be estimated. The AoA estimation is based on the phase
change in the peak of the range-FFT or Doppler-FFT, because
of differential distance from the object to each of the antennas,
which requires at least two Rx antennae. Similarly, an FFT on
the sequence of phasors corresponding to the 2D-FFT (range-
FFT and Doppler-FFT) peaks resolves the angle estimation
problem. This is called angle-FFT.

Figure 7. mmWave signal processing flow and calculations

C. Clustering and tracking

Detection’s (range, angle equivalent to X,Y coordinates)
resulting from FFT calculations are then clustered to identify,
track, and map detected targets. Clustering consists of finding
and removing outliers from the data that will be used for
tracking and objects classification which will improve the
performance of objects detection’s. A well-known data clus-
tering algorithm that is typically used in Machine Learning
(ML) is the Density-Based Spatial Clustering of Applications
with Noise (DVBSCAN) [20]. DBSCAN clusters the points
that are close to each other in a specific group based on
two parameters: i). The distance from an original point to
surrounding points (named eps); and ii). The minimum number
of points in one circle which center is the original point
and radius eps. The points that satisfy these two criteria are
clustered in the same core. The points that do not satisfy these
two parameters are classified as border and outlier (noise)
points.

D. Target’s classification using AI

Figure 8. MD plot showing velocity signature of a person in time

The use of AI combined with cameras and/or LIDAR
for positioning and classification has been already studied
and developed for use in A-SMGCS. However, this solution
is affected by environmental conditions, such as rain, dust,
smoke, fog, frost, darkness and direct sunlight. mmWave radar
integrated with AI enables to overcome these limitations as the
positioning (using signal processing functions listed above)
and targets classification using Machine Learning will be
based on the radar signal. Objects’ classification identifies
the target type, for airport context, three classes are targeted:
aircraft, vehicle, and persons. Multiple studies proposed the
use of ML in radar signal detection and classification [5] [19]
[21]. mmWave radar calculations are used as input to the ML
model including radar point clouds, 2D-FFT, 3D-FFT, and
Micro-Doppler (MD) signatures. A MD Signature [22] of a
target is a time varying frequency modulation imparted on
the radar echo signals by moving components of the target.
The following Fig. 8 illustrates a measurement performed in
a parking for a person walking forth and back in front of
the mmWave radar. The micro Doppler generates a certain
signature that will be used to train a model on the target type.

V. PRELIMINARY RESULTS AND DISCUSSION

A. 3D VA Results

The antenna presented in [14] has been optimized for 5G
signals. This antenna is enable to cover the all sub-6GHz 5G
band from 1.9GHz to 6GHz. The larger dimension is the hori-
zontal part with 24cm. The impedance bandwidth is presented
in Fig. 9 (a), and it is from 1.3GHz to 9GHz with reflection
coefficient Sii < −10dB and specifically Sii < −20dB in the
optimized bandwidth from 1.9 to 3.5GHz. We remark only one
port of the vertical and horizontal antenna part is represented.
The other ports have equivalent performances due to antenna
symmetry. In Fig. 9 (b), the isolation coefficient between ports
is plotted. A mutual coupling reduction of −20dB is obtained
for each port allowing a good orthogonality properties between
ports. In term of radiation pattern an example is given in
Fig. 10 and 11 for an excitation state corresponding to the
electric and magnetic dipole respectively, along z axis. Good
polarization discrimination can be expected due to the low
cross-polarization level for each radiation pattern.

B. Sub-6GHz Results

1) Uplink and Downlink Performance with VA and URA:
We evaluate VA and URA aided positioning performance with
UL and DL reference signals under 0dB SNR situation. 20
reference symbols and 300MHz bandwidth with 15KHz spans

Figure 9. (a) Reflection coefficient S11 (horizontal element) and S88 (vertical
element); (b) Isolation coefficient between Sij ports
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Figure 10. Gain(dB) in Co (red) and Cross (green) polarization for the
equivalent electric dipole in E (left) and H plane (right)

Figure 11. Gain(dB) in Co (green) and Cross (red) polarization for the
equivalent magnetic dipole in the E (left) and H (right) plane

are set for UL and DL two cases. The positioning simulation
estimates AoA and Delay profile of UE by using SRS and
PRS. Corresponding probability distribution functions (PDF)
and Root Mean Square Error (RMSE) with EM and Subspace
estimation methods are plotted in Fig. 12 (a). The mean value
of EM method is slightly higher than subspace’s. The subspace
RMSE PDF is more concentrated at the mean value than EM.
Curves of SRS and PRS are overlapped since they are using
the same frequency domain and time domain resources (e.g.,
bandwidth, comb factors, and symbol numbers).

Fig. 12 (b) plots the mean RMSE with simulation repetition
times for PRS and SRS cases. By comparing the curves of EM
and subspace methods when using the same reference signal,
EM curve convergences to 0.36 m and subspace convergences
to 0.3 m, which is slightly lower than EM. Also, performance
of PRS and SRS are the same.

2) Downlink Performance with VA Array: Fig. 13 plots
RMSE values of AoA estimation by using single VA and
2×2 VA array with half wavelength element spacing. Subspace
method is used for searching AoA and the span is 1◦. At the
same RMSE value in Fig. 13 (a), VA array’s curve requires
around 13 dB less SNR than VA’s. In other words, VA array’s
curve has better estimation accuracy than VA with the same
SNR value. This keeps true with higher SNR values (range
from 15 dB to 30 dB) in Fig. 13 (b), logarithm scale plot.
Intuitively, combination of antenna array structure with VA
improve the AoA estimation accuracy even if the array size is
as small as 2× 2.
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Figure 14. (a) Wireless InSite® Muret Ray Tracing Output. Flight transmitting
SRS to gNB and objects illuminated by SRS signal are reflecting signal
back to the flight. We set 24 dBm TX power and 17.1 dBi antenna gain.
The received signal strength from every path is higher than the flight RX
sensitivity −90 dBm [23] [24]; (b) Range Doppler Plot. It contains seven
reflection points (Marked as A to G) and two mirrors of A and E

3) Imaging with 5G Signal: We evaluate the 5G-aided
imaging function by using SRS. The SRS signal takes up
150 MHz bandwidth with 15 kHz subcarrier spacing in the
frequency domain, and it uses 2000 OFDM symbols in the
time domain. Fig. 14 (a) and (b) plot reflection path of Muret
airport and corresponding range Doppler processing output.
By comparing two plots, the range-Doppler plot contains
reflections marked by A to G and also mirrors of E and A.
As SRS symbols are non-continuous among slots, the symbols
which are not used by SRS will cause mirrors in the range-
Doppler plot result. Under this case, 91.84 m/s is the span
between reflection points and their mirrors. To counter-effect
such phenomenon, reducing the antenna beam or the flight
speed are proper approaches. Based on simulation results,
we can see reflections from major objects. This image will
provide extra data source to improve the target detection and
identification together with other sensor modals e.g. mmWave
radar, optic sensors, or LiDAR. As a remark for futur work, it
can be interesting to use this information (the main mutipath
direction and location to use them in AOA and TOA algorithm

C. mmWave Results

Texas Instrument (TI)’s radar chips and evaluation boards
- AWR1443, AWR1642, and AWR1843 - are used to assess
mmWave technology as they provide small form factor boards
allowing to retrieve directly on a PC raw ADC data from mul-
tiple Rx antenna (Fig. 15) (a). The assessment was done using
basic unitary testing in a controller laboratory environment in
addition to test scenarios performed at underground parking. A
parking environment can be considered as a good baseline for
validation with a lot of similarities with airport environment,
mainly to detect vehicles and humans, and to validate the radar
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Figure 15. (a) AWR1843 board, TX and RX antennae details [25]; (b) 1D
FFT amplitude profile (per chirp)

functional aspect (range, velocity, and angle information). A
preliminary target detection is shown in Fig. 15 (b). Additional
testing in the next project phase at airport will allow to also
test aircraft detection. The main challenge during the first
project phase has been to control the software environments
and to process the raw radar data. The first testing results
confirmed the capability and the potential of the mmWave
technology. The measured radar performance was aligned with
the theoretical calculation, and the radar was mainly able to
detect moving targets in a complex environment. In the next
project phase, the main objective will be to consolidate a
dataset for AI training using the different scenarios recording
including the underground parking, and later on the Muret
Airfield. This dataset will be used to train an AI model to
identify target’s type (person, vehicle, or aircraft).

VI. CONCLUSION

In this paper, we described the motivation and collaborative
approach for the elaboration of a new surveillance service
for small and medium-sized airports, based on the 3D-VA
enhanced 5G positioning and fusion of sub-6GHz 5G sig-
nal and mmWave sensing. The detailed design procedure of
3D-VA was described and optimized for the sub-6GHz 5G
spectrum with preliminary measurements of S-parameter and
radiation pattern. The angle-and-delay estimation algorithms,
as well as the related positioning strategy were shown. We
also showed the enhancement effect of the 3D-VA for the angle
estimation. The working principle of the FMCW mmWave and
the experimental results based on the TI AWR1843 were also
shown. Based on the preliminary results of 3D-VA, angle-
delay estimation algorithms, sub-6GHz and mmWave sense,
we showed that the selected techniques are competent for the
roles in the original hypothesis. To further prove the benefits of
the collaborative approach, the following work will be imple-
mented: i), experimental 3D-VA angle estimation performance
evaluation; ii), verification of the angle-delay algorithms and
SAR capability with practical 5G radio samples; iii), intelligent
target recognition with Doppler signature of mmWave radar;
and iv), joint target registration based on sub-6GHz SAR
image and mmWave radar detection.
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