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Abstract—Nowadays, recognizing and understanding human 

speech is quite popular through systems like Alexa®, the Google 

Assistant or Siri®. Speech also plays a major role in air traffic 

control (ATC) as voice communication between air traffic 

controllers (ATCos) and pilots is essential for ensuring safe and 

efficient air traffic. This communication is still analogue and 

ATCos are forced to enter the same communication content again 

into digital systems with additional input devices. Automatic 

speech recognition (ASR) is a solution to automate this digitization 

process and an important necessity in optimizing ATCo workflow. 

This paper investigates the applicability of DeepSpeech, an open 

source, easy to adapt, end-to-end speech recognition engine from 

the Mozilla Corporation, as a speech-to-text solution for ATC 

speech. Different training approaches such as training a model 

from scratch and adapting a model pre-trained on non-ATC 

speech are explored. Model adaptation is performed by employing 

techniques such as fine-tuning, transfer learning, and layer 

freezing. Furthermore, the effect of employing an additional 

language model in conjunction with the end-to-end trained model 

is evaluated and shown to lead to a considerable relative 

improvement of 61% in word error rate. Overall, a word error 

rate of 6.0% is achieved on voice recordings from operational and 

simulation environment of different airspaces, resulting in 

command recognition rates between 85% and 97%. The achieved 

results show that DeepSpeech is a highly relevant solution for 

ATC-speech, especially when considering that it includes easy to 

use adaptation mechanisms also for non-experts in speech 

recognition. 

Keywords-automatic speech recognition; ASR; air traffic 

control; ATC; DeepSpeech; ontology; domain adaptation 

I. INTRODUCTION

A. Problem

Speech is mankind’s most important means of

communication. Its complexity and expressive possibilities 

allow the exchange of a wide range of information. In recent 

years, applications that allow recognition and understanding of 

human speech have become increasingly popular. Systems like 

Alexa®, the Google Assistant or Siri® work reasonably well for 

everyday speech and enable a wide variety of applications 

ranging from searching simple answers for voice queries to 

controlling home automation systems. Speech also plays a major 

role in ATC. The voice communication between ATCos and 

pilots primarily consists of instructions, reports, and readbacks 

which clearly indicate the future behavior and action of aircraft. 

This workflow is essential for ensuring a safe and efficient 

navigation of aircraft through different airspaces. However, to 

this day, this communication is still analogue and ATCos are 

forced to enter the same information – the communication 

content – again into digital systems with mouse, keyboard or 

touch devices. Automatic speech recognition (ASR) offers a 

solution to automate this digitization process. It helps to 

optimize ATCo’s workflow and enables more complex 

applications based on ASR output. The popular systems from 

Amazon, Google or Apple are not suitable for ATC speech, as 

they were created for non-ATC purposes. Furthermore, these 

systems are cloud-based and proprietary, which introduces data-

security issues and does not allow any domain-specific 

adaptation through the user. 

Projects in the recent past have shown that methods and 

technologies exist which allow the adaptation of speech 

recognition to ATC speech. The Active Listening Assistant 

(AcListant®) project [1] introduced assistant-based speech 

recognition (ABSR) [2] a new type of ASR. ABSR can support 

controller assistant systems and thus ATCos [3],[4]. ATCos can 

benefit from reduced workload [5], which leads to more efficient 

air traffic control [6]. The Horizon 2020 funded project 

MALORCA successfully expanded the ABSR approach to 

reduce the costs of adaptation to different environments [7]. 

Current SESAR projects such as HAAWAII [8], PJ.10-96-W2 

[9], and PJ.05-97-W2 [10] are also working on different aspects 

of ABSR to further improve the technology. Such projects make 

ABSR usable for pilot speech and enable more applications such 

as workload estimation or readback error detection. 

One experiment of the SESAR funded solution PJ.16-04 

CWP HMI used a commercial off-the-shelf speech recognition 

engine from Nuance Communications. For the purpose of the 

project, the grammar of the engine was adapted to cover ATC 

speech in the terminal maneuvering area. The command 

recognition rates of this approach ranged between 31% and 82% 

for different ATCos in a lab environment [11]. This was for the 

most part far away from the reported 83% to 95% achieved in 

MALORCA [7] and AcListant® [3], [5]. In contrast to PJ.16-04 



the speech recognition component in these ABSR-related 

projects heavily relied on ASR experts to achieve the reported 

recognition quality. Hence, a transfer of these technologies and 

know-how to non-speech recognition experts from ATC or air 

traffic management (ATM) industry is difficult and risky. 

B. Solution 

In 2017, the Mozilla Corporation started DeepSpeech [12], 

an open-source, end-to-end speech recognition engine, which is 

originally based on a research paper from Baidu Research [13]. 

In its current state, the project not only offers a pre-trained 

English model for everyday speech, it also provides the 

necessary means, tools, and descriptions for easy adaptations to 

different domains and languages. The easy to use nature 

especially for non-speech recognition experts and the platform 

maturity makes it interesting as a solution for ATC speech. 

The aim of this paper is to evaluate the quality of 

DeepSpeech as a speech recognition component for ABSR. For 

this purpose, different training approaches such as training a 

model without prior knowledge from scratch and also adapting 

a model pre-trained on non-ATC speech are explored. The 

model adaptation is performed via different techniques, e.g., 

fine-tuning, transfer learning, and layer freezing. A further 

contribution is the evaluation of using an additional language 

model for rescoring in conjunction with the end-to-end trained 

model and the resulting effects on performance when using ATC 

speech data. This is motivated by previous research showing 

improved results by using an additional language model with 

end-to-end speech recognition, especially with medium-sized 

training data sets [14].  

C. Paper Structure 

In the next section we present related work on speech 

recognition in ATC. Section III outlines the conventional ASR 

pipeline and end-to-end models. Section IV gives insights into 

DeepSpeech and the applied training approaches. Section V 

shows semantic ATC interpretation on speech-to-text output 

coming from a DeepSpeech model. Section VI explains the 

performed experiments and used metrics to determine the 

quality of word recognition and semantic interpretation, whereas 

Section VII presents the results. Section VIII concludes the 

paper and gives an outlook on what could be next. 

II. RELATED WORK ON ASR IN ATC 

DLR and Saarland University developed ABSR for ATC-

domain speech recognition [3]. ABSR uses speech recognition 

embedded in a controller assistant system. It makes use of the 

contextual information from the assistant system to reduce the 

search space of a speech recognizer, thereby increasing the 

recognition performance [3]. The ASR models used so far for 

ABSR are based on Kaldi [15], an open-source speech 

recognition toolkit. The decoder is based on weighted finite-state 

transducers [16]. In some controller areas, ABSR reached 

command recognition rates exceeding 95% [3]. It also proved to 

significantly increase ATM efficiency. Fuel reductions of 60 

liters per flight and a throughput increase by two arrivals per 

hour are possible due to reduction of controller workload when 

using ABSR [6]. Adapting ABSR for different airports or 

control sectors is difficult, as it requires human experts and many 

manual adaptations [17]. This problem was tackled in the project 

MALORCA, which performs semi-automatic adaptation of 

ABSR to other airports based on radar and audio recordings [7]. 

In 2018, Airbus held an ATC speech recognition challenge. 

The participants were provided with 40 hours of ATC-speech 

data. The objective of the participants was to develop a model 

that can perform automatic speech-to-text transcription for 

ATC-speech. The models from all participants were evaluated 

on a data set of about five hours. The best ranked team achieved 

a word error rate (WER) of 7.62% [18]. 

The suitability of several state-of-the-art deep neural 

network architectures for ASR in the ATC domain was 

evaluated in [19]. All the models were developed using Kaldi. 

The models were trained on about 176 hours of ATC-speech 

data. The proposed ASR engine for ATC speech achieved an 

averaged WER of 7.75% across four test sets with different 

accents and the results suggest that training on cross-accent data 

helps in the overall system’s performance, rather than limiting 

the amount of data to single-accent data sets [19]. 

III. ASR PIPELINES 

A. Conventional ASR Pipeline 

ASR is the process of converting input speech signals into 

their underlying textual representation by means of a computing 

system. The most fundamental approach of speech recognition 

involves the following steps: 

• The digital speech signal is processed to extract a sequence 

of feature vectors 𝐗 = (𝐱1, 𝐱2, … , 𝐱𝑡, … 𝐱𝑇 ), where 𝐱𝑡 

represents a feature vector at discrete audio frame index 𝑡 

and 𝑇 is the number of frames in the sequence. 

• Given this sequence of feature vectors 𝐗, the corresponding 

sequence of words 𝐖∗ = (𝐰1, 𝐰2, … , 𝐰𝑟 , … , 𝐰𝑅) with 

word index 𝑟 and length 𝑅 is found. The word sequence 𝐖∗ 

has the maximum posterior probability 𝑃(𝐖 | 𝐗) which is 

computed using Bayes theorem [20] as  

𝐖∗ = argmax 
𝐖

𝑃(𝐖|𝐗) = argmax
𝐖

 
𝑝(𝐗|𝐖)𝑃(𝐖)

𝑝(𝐗)
 (1) 

where 

• 𝑝(𝐗|𝐖) is called the acoustic model, 

• 𝑃(𝐖) is called the language model. 

 
Figure 1. Conventional ASR pipeline 

The various components involved in a classical speech 

recognition system are shown in Figure 1. The feature extraction 

module provides a high-dimensional feature vector for every 
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frame of the pre-processed signal, thereby producing the feature 

vector sequence 𝐗. Among different types of features, Mel-

Frequency Cepstral Coefficients (MFCC) [21] and Perceptual 

Linear Predictive (PLP) [22] are classical choices. 

The acoustic model gives an estimate of the probability of 

how the given phonetic sequence sounds like in terms of the 

feature vector sequence, expressed by the term 𝑝(𝐗|𝐖) in (1). 

These statistical representations are modelled using different 

classification methods such as Hidden Markov Models 

(HMMs), Deep Neural Networks (DNNs), and sequence-to-

sequence acoustic modeling [23]. 

The language model, i.e., 𝑃(𝐖), is independent of the 

acoustic observations. The objective of the language model is to 

incorporate restrictions on the way, in which the words of the 

vocabulary can be concatenated to form whole sentences [24]. 

The language model expresses these constraints by assigning a 

probability to each sequence of words. It provides an estimate of 

the prior probability 𝑃(𝐖) in (1). Many different language 

modelling types such as n-gram, bidirectional, exponential 

modelling etc., are used depending on the application. 

In large-vocabulary speech recognition, words are 

considered as sequences of states 𝐐. A lexical model also known 

as pronunciation dictionary describes how words are 

pronounced phonetically. It is created by human experts with the 

help of a phone set which is specific to a language. The 

pronunciation model defines the relationship between 

orthographic and phonemic representations of words. 

Incorporating the pronunciation model, the fundamental 

equation of speech recognition can be rewritten as 

𝐖∗ = argmax 
𝐖

𝑝(𝐗|𝐐) ⋅ 𝑃(𝐐|𝐖) ⋅ 𝑃(𝐖), (2) 

where 𝑃(𝐐|𝐖) is the pronunciation model. 

In speech recognition, making a search decision is also 

referred to as decoding. The decoding process of a speech 

recognizer is to find a sequence of words whose corresponding 

acoustic and language models best match the input signal [20]. 

Decoding is basically a process of finding a word sequence 𝐖∗ 

which has maximum posterior probability 𝑃(𝐖|𝐗) as shown in 

(1). Search strategies based on dynamic programming or the 

Viterbi algorithm have been applied successfully to a wide range 

of speech recognition tasks [20]. 

B. End-to-End Models 

In the conventional ASR pipeline, various training methods 

exist for each module of the previous subsection. Every module 

is independently optimized with its own optimization objective 

function. Consequently, this makes the training process complex 

and difficult to be globally optimized [25]. In recent years, end-

to-end speech recognition models have received significant 

interest due to the simplification of the training process. End-to-

end refers to the point that most modules of the conventional 

pipeline are replaced by one neural network-based model. This 

model is able to perform decoding on its own, which means it 

can directly map a feature vector sequence 𝐗 to a sequence of 

words 𝐖+ as shown in Figure 2. This allows to model 

dependencies in the acoustic sequence and the word sequence 

and therefore already integrates knowledge about the acoustics 

and the language using a joint optimization process.  

 
Figure 2. End-to-end ASR pipeline 

The fact that an end-to-end model is able to perform 

decoding on its own makes the usage of a language model 

optional [26]. Nevertheless it is known that on medium-sized 

data sets combining an end-to-end model with an additional 

language model on top, see “Rescoring and Decoding” with 

output 𝐖∗ in Figure 2, can improve the performance, e.g., in 

conjunction with so-called transformers [14]. A popular training 

approach for end-to-end models is Connectionist Temporal 

Classification (CTC) [27]. 

IV. DEEPSPEECH RECOGNITION ENGINE 

DeepSpeech is an open-source end-to-end speech 

recognition engine launched in 2017 by the Mozilla 

Corporation. It was developed based on deep learning 

algorithms and is originally inspired by the research papers 

[13], [28]. DeepSpeech can be trained using supervised learning 

techniques without any external “sources of intelligence”, like 

a grapheme-to-phoneme converter or forced alignment on the 

input [29]. All the models discussed in this paper are trained 

using DeepSpeech version 0.9.3 [30]. This section describes the 

model architecture of DeepSpeech and training approaches 

used in this paper. 

A. Architecture 

The core of DeepSpeech is a deep recurrent neural network 

[31],[32] that receives audio features as input and outputs the 

corresponding transcription. The model architecture of 

DeepSpeech for the first three exemplary frames of the input 

feature sequence 𝐗 is illustrated in Figure 3. 

Figure 3. Model architecture of DeepSpeech 
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The deep recurrent neural network has overall six layers. 

MFCC features [21] are extracted from the input audio signal 

and fed into three fully connected (FC) layers with rectified 

linear unit (ReLU) activation function. The fourth layer is a 

unidirectional long short-term memory (LSTM) [33] unit with 

tanh activation function. This is followed again by an FC layer 

with ReLU activation function. The output layer of the network 

gives a matrix of character probabilities over time, which is a 

fully connected layer with softmax activation function. For each 

step, the network outputs a probability 𝑃(𝑐𝑖|𝐱𝑡) of each 

character 𝑐𝑖 in the character set 𝒞, corresponding to that 

particular input audio frame 𝑡. DeepSpeech uses the CTC-loss 

function [27],[34], the gradients with respect to all model 

parameters are computed via back-propagation [35], and the 

Adam optimizer [36] is used for training. 

B. External Scorer 

CTC-based end-to-end models often use additional language 

models (often called scorer) to improve the recognition 

performance. Similarly, DeepSpeech can use an additional 

language model, which is referred to as “scorer”, to improve the 

accuracy of the predicted transcripts. The scorer is used to 

compute the likelihood (also called a score, hence the name 

“scorer”) of sequences of words or characters in the output, to 

guide the decoder towards more likely results [37]. The scorer 

consists of two components, the 

• KenLM language model [38], 

• and a vocabulary as a text file. 

 The probability estimate from the language model is 

included as a factor in the inference problem [34], which is given 

by 

 𝐖∗ = argmax
𝐖

𝑃(𝐖|𝐗) ⋅ 𝑃(𝐖)𝛼 ⋅ 𝑅𝐖
𝛽

. (3) 

The language model probability is raised with the language 

model weight 𝛼. The number of words 𝑅𝐖 in the sequence 𝐖 is 

raised by the word insertion weight 𝛽. The decoder preference 

to a smaller number of longer words or a larger number of 

shorter words is controlled using 𝛽. Both 𝛼 and 𝛽 are determined 

empirically by tuning them on a development data set [20]. 

C. Training Approaches 

As part of the DeepSpeech 0.9.3 release a model for regular 

English language is provided. The pre-trained English model 

was trained on approximately 6,500 hours of data not related to 

ATC, which can be directly used for inference. DeepSpeech also 

provides means to train a completely new model without prior 

knowledge from scratch for any domain-specific data set. 

In addition to training a model from scratch, DeepSpeech 

allows to adapt models pre-trained on other data sets. There are 

two approaches supported for adaptation by DeepSpeech 

namely fine-tuning and transfer learning [39]. For fine-tuning, 

checkpoints of a pre-trained model can be used to bootstrap the 

training process [39]. The requirement is that the transcriptions 

of the target data set also come from the same character set as 

the model which is used for adaptation. 

DeepSpeech’s transfer learning allows to remove certain 

layers from a pre-trained model, to initialize new layers for the 

target data, to stitch together the old and new layers, and to 

update all layers via gradient descent. This training approach is 

suggested when the character set of the pre-trained model does 

not match with the target data [40]. The pre-trained output layer 

(and optionally more layers) can be removed and reinitialized to 

fit the target alphabet. 

In addition to the implementation provided by DeepSpeech 

for transfer learning, [41] discusses another approach called 

layer freezing. In this process, many parameters of the original 

model may be “frozen”, i.e., held constant during training. In the 

transfer learning approach discussed previously, the weights of 

certain chosen layers of a pre-trained model are dropped, i.e., 

they are reinitialized and then the weights of all the layers are 

updated during the training process. On the other hand, in the 

layer freezing approach, the weights of certain chosen layers of 

a pre-trained model are held constant throughout the training 

process. Only the weights of those layers, which are not frozen 

are updated during the training process. The first (and optionally 

more subsequent layers) can be frozen during the training 

process. 

V. SEMANTIC INTERPRETATION OF ATC SPEECH 

A DeepSpeech model provides recognized words for a given 

audio utterance as output. When comparing this speech-to-text 

output with the gold (correct) transcription, the WER can be 

calculated. For an ATC application this is more or less useless, 

as long as no semantic interpretation exists. An ATCo does not 

care if the words of a greeting are correctly recognized. A wrong 

recognition of a greeting should, accordingly, not disturb the 

correct recognition of, e.g., a descend command. But, what does 

semantic interpretation mean? Given the utterance “three nine 

two papa continue heading zero six zero descend altitude six 

thousand”, the semantic interpretation is: 

AUA392P MAINTAIN HEADING 060 none  

AUA392P DESCEND 6000 none 

The CWP HMI project [42], in which more than 20 

European partners from ATM industry, research and air 

navigation providers worked together from 2016 to 2018 has 

developed a so-called ontology, i.e., rules for transforming ATC 

utterances into their semantic interpretations. An utterance 

consists of one or more instructions. 

  
Figure 4. Elements of an instruction consisting of a callsign, a command, and 

optional condition(s). 

Each instruction (Figure 4) consists of one callsign, one 

command, and either no, one or more conditions. A command 

always has a type and depending on the type values, a unit and 

a qualifier can follow. In the above example the words “three 

nine two papa continue heading zero six zero” are transformed 

into the callsign “AUA392P”, which is only possible, if additional 

Instruction

Command Condition(s)

Type Value(s) Unit Qualifier
Conjunction +
Requirement

ReasonSpeaker
Callsign
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context information from, e.g., surveillance data is available. 

The type, extracted from “continue heading” consists of the two 

words “MAINTAIN HEADING”.  The utterance “zero six zero” is 

transformed into the value 060. As no qualifier LEFT or RIGHT is 

specified, none is added, since a qualifier is mandatory for the 

MAINTAIN HEADING command. 

In each instruction the callsign is repeated, although spoken 

only once. If no callsign is said or could not be extracted, 

respectively, NO_CALLSIGN is used. The utterance “descend 

altitude” is mapped to the type DESCEND, while “six thousand” 

results in the value “6000“. No unit (e.g., feet or flight level) is 

provided. Therefore, again “none” is used. A qualifier is 

optional for a DESCEND command type. 

The word sequence “four eight six november i call you for 

preceding traffic turn left heading seven zero initially” results in  

NLY486N INFORMATION TRAFFIC none  

NLY486N HEADING 070 LEFT 

The heading value according to the ontology always has 

three digits, although the leading zero was not said, which is a 

deviation from the International Civil Aviation Organization 

(ICAO) phraseology. The word sequence “danke schoen four 

miles final speed one sixty or less tower one correction four 

miles final speed one sixty tower one two three eight good bye” 

results in 

NO_CALLSIGN CORRECTION  

NO_CALLSIGN SPEED 160 none UNTIL 4 NM FINAL  

NO_CALLSIGN CONTACT TOWER  

NO_CALLSIGN CONTACT_FREQUENCY 123.800  

NO_CALLSIGN FAREWELL 

The semantic interpretation is needed to calculate comand 

recognition rates when comparing the automatic inerpretation 

with the gold (corret) interpretation. 

VI. EXPERIMENTAL SETUP AND METRICS 

Multiple DeepSpeech models for word recognition were 

trained with the training approaches described in IV.C. For 

semantic interpretation, an already implemented rule-based 

model was used [43]. This section describes the used data sets 

for training, validation, and evaluation, as well as the used 

metrics to determine the quality of word recognition and 

semantic interpretation. 

A. ATC Communication Data Sets 

The used data sets consist of voice and radar recordings from 

operational (ops) and simulation (lab) environment of Prague 

Approach (Czech Republic) and Vienna Approach (Austria) 

from the SESAR projects MALORCA and PJ.16-04 CWP HMI. 

For DeepSpeech model training, these data sets were combined 

with the ATCOSIM data set, a publicly available lab data set that 

contains ATC voice recordings (no radar recordings) for the en-

route sectors Söllingen, Geneva, and Zürich [44]. The combined 

data set contains voice recordings with a total duration of 33.6 

hours in 28,452 voice utterances. All the voice utterances have 

corresponding manually created and verified transcriptions. For 

the experiments, the data set was split as shown in Table I. 

TABLE I.  SPLITTING OF DATA SET FOR DEEPSPEECH MODEL TRAINING 

Data Set # Utterances Duration 

Training 17,877 21.0 h 

Validation 7,662 9.0 h 

Test 2,913 3.6 h 

 

The data in Table I is used for training and evaluation of a 

DeepSpeech model for word recognition. For the evaluation of 

the semantic interpretation as described in Section V, manually 

created/verified semantic interpretations (gold annotations) are 

required. The ATCOSIM data set does not have any gold 

annotations so it is excluded for the semantic interpretation 

experiments. Half the utterances from the Vienna ops room 

environment have a gold annotation. From Prague ops/lab and 

Vienna lab environment, all manually transcribed utterances 

also have a gold annotation, resulting in the number of utterances 

shown in Table II. Table III shows the corresponding number of 

ATC commands. 

TABLE II. NUMBER (#) OF UTTERANCES AND AVERAGE NUMBER OF WORDS 

PER UTTERANCE (UTT) 

Data Set All 
Training + 

Validation 
Test 

Words/Utt 

(Average) 

Ops Prague 3,039 2,368 671 13.2 

Lab Prague 4,219 3,877 342 13.2 

Ops Vienna 2,956 2,785 171 unknown 

Lab Vienna 3,566 3,201 365 13.9 

 
TABLE III. NUMBER (#) OF COMMANDS (CMDS) AND AVERAGE NUMBER OF 

COMMANDS PER UTTERANCE (UTT) 

# Commands All 
Training + 

Validation 
Test 

Cmds / Utt 

(Average) 

Ops Prague 6,120 4,765 1,355 2.0 

Lab Prague 6,904 6,313 591 1.6 

Ops Vienna 4,713 4,419 294 1.6 

Lab Vienna 6,014 5,384 630 1.7 

 

B. Evaluation Metrics 

For speech recognition systems the commonly used metric 

for performance comparison is the word error rate (WER), 

which is derived from the Levenshtein distance. It determines 

the quality of a recognition by the three types of errors which 

can appear: 

• Substitution (S) – an incorrect word was substituted for the 

correct one in the recognized word sequence 

• Deletion (D) – a correct word was omitted in the 

recognized word sequence 

• Insertion (I) – an extra word was added in the recognized 

word sequence 

Based on these error types, the WER is given by  

𝑊𝐸𝑅 =
𝑆+𝐼+𝐷

𝑁
, (4) 
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where N is the number of words in the reference (gold) 

transcription and S, I, and D as described above.  

The quality of semantic interpretations is evaluated on 

ontology instructions (see Section V). The so-called command 

recognition rates are computed by comparing the correct 

semantic interpretation of a voice utterance (gold annotation) to 

the results of the automatic semantic interpretation (automatic 

annotation). For a given voice utterance, each instruction in a 

gold or automatic annotation is treated as one big word. Then, 

similar to WER, the Levenshtein distance between the gold and 

automatic annotation is calculated, resulting again in the 

number of substitutions (S), insertions (I), and deletions (D). 

Table IV gives an overview about the different metrics, where 

#gold means the total number of commands in the gold 

annotation and #matches = #gold - S - D. More information and 

examples are provided in [45]. 

TABLE IV.  METRIC DEFINITIONS 

Metric Calculation 

Command Recognition Rate (RcR) RcR = #matches / #gold 

Command Recognition Error Rate (ErR) ErR = (S + I) / #gold 

Callsign Recognition Error Rate (CaE) 

Same as ErR, but only for 

callsigns without 
instructions 

 

For calculating the CaE, we just compare callsigns from the 

gold and automatic annotation. For each voice utterance we 

consider the callsign only once, except if more than one callsign 

is annotated or extracted, then the calculation is done for each 

callsign. 

VII. RESULTS AND DISCUSSION 

Various DeepSpeech models for word recognitions were 

created/used and evaluated. Creation of the models, except for 

one, is based on the data sets Train and Validation. Evaluations 

are based on the data set Test, described in section VI.A. Table 

V shows results for following models (details in section IV.C): 

• Pre-train – English model, no ATC speech adaptation.  

• Scratch – New model trained only on ATC speech. 

• Fine-Tune – Pre-trained model adapted with ATC speech. 

• Trans-Learn-X – Pre-trained model adapted with ATC 

speech via transfer learning. X refers to the number of 

reinitialized layers, where these are preceding layers 

starting from the output layer. 

• Layer-Freeze-X – Pre-trained model adapted with ATC 

speech via layer freezing. X refers to number of frozen 

layers, where these are subsequent layers starting from the 

input layer. 

The different models were evaluated with an additional 3-

gram, 4-gram, or no language model (LM) resp. scorer (see 

Section IV.B). The table shows that using the pre-trained model 

without any adaptation to ATC-speech is not usable, because 

WER varies between 85.2% and 100.0%. The other models 

which all incorporate an adaptation to ATC speech all reach 

quite good results with WERs below 10% with  a 4-gram LM. 

Overall, the best result is achieved by adaptation of the pre-

trained model with the fine-tuning method, which shows that the 

out-of-domain data used for pre-training can still help in training 

a model for the ATC domain, even though the domains are quite 

different. Since the Trans-Learn-X approaches all provide worse 

WERs compared to Fine-Tune, it can be inferred that the pre-

trained parameters of all layers contribute to a better ATC 

domain performance.  The Fine-Tune model achieved a WER of 

15.5% without using an LM. With a 4-gram LM the WER is 

reduced significantly to 6.0%.  

TABLE V.  WER ON TEST DATA WITH DIFFERENT DEEPSPEECH MODELS 

Model 
No LM  

WER % 

3-gram LM  

WER % 

4-gram LM 

WER % 

Pre-train 100.0 85.2 86.6 

Scratch 20.0 8.6 8.2 

Fine-Tune 15.5 6.3 6.0 

Trans-Learn-1 22.6 7.7 7.4 

Trans-Learn-2 24.3 8.3 7.8 

Trans-Learn-3 31.4 9.1 8.6 

Trans-Learn-4 32.9 10.0 9.4 

Trans-Learn-5 33.1 10.4 9.8 

Layer-Freeze-1 15.8 6.3 6.0 

Layer-Freeze-2 16.7 6.8 6.5 

Layer-Freeze-3 17.1 7.7 7.4 

Layer-Freeze-4 18.5 7.9 7.6 

 

Results of the following semantic interpretation are always 

based on the output of Fine-Tune, in combination with the 4-

gram LM. Table VI presents the error rates on automatic 

extraction of callsigns. The column “Gold” shows the CaE on 

automatically extracted callsigns from the manually transcribed 

voice utterances and thus provides an upper limit for callsign 

extraction that can be reached with a perfect ASR model. 

TABLE VI. CALLSIGN RECOGNITION ERROR RATE CAE 

 CaE Gold CaE Auto WER Delta Abs Delta Rel 

Ops Prague 0.6% 5.7% 9.1% 5.1% 90% 

Lab Prague 0.0% 3.9% 1.1% 3.9% 100% 

Ops Vienna 0.6% 6.4% 9.0% 5.8% 91% 

Lab Vienna 1.6% 3.0% 2.6% 1.4% 45% 

 

The performance is very good and ranges between 0% and 

1.6%, but we also see that the callsign extraction is not perfect, 

except for the lab data from Prague. When the automatically 

transcribed utterances, i.e., the DeepSpeech model with a certain 

WER is used for word recognition, the performance of the 

callsign extraction decreases as seen in column “Auto”. The 

corresponding WER of the DeepSpeech model on the different 

data sets can be seen in the respective column. The column 

“Delta Abs” shows the absolute reduction of the CaE between 

“Gold” and “Auto” and column “Delta Rel” shows the relative 

loss. 

Table VII has the same structure as before, but shows the 

RcR performance, i.e., the quality on extracting full instructions 

instead of only callsigns. The results on the manual transcripts 

(Gold) show that the extraction works very well on Prague 

utterances. Also, Vienna results are quite good, but some 

challenges are left. The majority of the problems result from the 

fact that deviations from standard phraseology occur more often 
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in the Vienna utterances than in the Prague utterances. The 

extraction performance again goes down, when automatic 

transcriptions from DeepSpeech are used instead of the gold 

transcriptions (Auto). 

TABLE VII.  COMMAND RECOGNITION RATE RCR  

 RcR Gold RcR Auto WER Delta Abs Delta Rel 

Ops Prague 98.2% 85.0% 9.1% 13.1% 15% 

Lab Prague 99.7% 97.0% 1.1% 2.7% 3% 

Ops Vienna 96.3% 87.4% 9.0% 8.8% 10% 

Lab Vienna 97.5% 95.6% 2.6% 1.9% 2% 

 

The WER for Vienna is comparable to the WER for Prague. 

Therefore, we achieved similar results on RcR. The results 

published in [11] (lab) and [46] (ops room) always report a better 

RcR and WER for Prague compared to more noisy Vienna data, 

but these projects created speaker specific models for Vienna 

and Prague. Our approach uses a common model trained on data 

from Vienna, Prague and ATCOSIM from ops room and lab 

environment plus thousands of hours of regular speech already 

included in the pre-trained DeepSpeech model, which enables it 

to be used for both environments without retraining. 

TABLE VIII.  COMMAND RECOGNITION ERROR RATE ERR 

 ErR Gold ErR Auto WER Delta Abs Delta Rel 

Ops Prague 1.5% 8.4% 9.1% 6.9% 82% 

Lab Prague 0.3% 2.9% 1.1% 2.5% 88% 

Ops Vienna 4.4% 8.8% 9.0% 4.4% 50% 

Lab Vienna 1.1% 1.4% 2.6% 0.3% 22% 

 

Table VIII shows the achieved ErR. Error rates of 0.6% for 

Prague and 3.5% for Vienna were reported in [46], but their 

context from available surveillance and weather data was used 

to optimize the word recognition and exclude unlikely 

extractions, which is not used here. From previous experiments 

it can be expected that using context information will 

dramatically improve the presented ErR herein and only slightly 

decrease the RcR. 

VIII. CONCLUSION AND OUTLOOK 

The aim of this paper was to identify the suitability of 

DeepSpeech, as an open source easy to use speech recognition 

engine from the Mozilla Corporation, as a speech-to-text 

solution for domain-specific speech in ATC. Various end-to-end 

models were trained based on different training approaches. 

Based on the performance results achieved by these models, it 

can be concluded that DeepSpeech provides a solution to easily 

create end-to-end models that deliver great performance for 

ATC speech even if only a relatively small amount of domain-

specific training data is available. 

The used training approaches were based on either training a 

new model from scratch with only ATC related speech or 

adaptation of the pre-trained English model provided by 

DeepSpeech, which is trained on thousands of hours of non-

ATC speech. The best results were achieved by a fine-tuning 

adaptation of the general DeepSpeech English model with about 

30 hours of domain-specific ATC speech, i.e., the WER of this 

model on test data was 6.0% compared to 8.2% for a model 

trained from scratch. 

Although the trained end-to-end models can perform 

inference for ATC speech without any additional language 

model, an additional scorer was used to improve the recognition 

performance. In our scenario, an impressive relative WER 

improvement of 61% was observed for the best model, when the 

inference was performed along with a 4-gram LM. 

Performing automatic semantic interpretations on the output 

of the best DeepSpeech model showed command recognition 

rates between 85% and 97% and command recognition error 

rates between 1.4% and 8.8%. For some data sets, the 

performance on the gold transcriptions is very good, but for 

some there is still room for improvement on the word 

recognition, but also on the semantic interpretation side. 

However, considering the relatively simple architecture of 

DeepSpeech and its easy-to-use nature, that makes adaptations 

possible in an efficient way. These results are impressive and 

can be considered as state-of-the-art for ATC speech [11], [46]. 

In the future, the performance of the trained models could be 

improved further by exclusively tuning the models to a specific 

controller area or with enough data even for a specific controller. 

The best performance improvement can be expected by ABSR, 

i.e. the integration of surveillance data. The models can also be 

trained further using more data from different airports or sectors 

to obtain a general model which is even more robust to changes 

to other control areas. 
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