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Abstract— The Automatic Safety Monitoring Tool (ASMT) is a 

key component of the Safety Management System of an air 

navigation service provider. Its main function is to monitor and 

record separation minima infringements and runway incursions. 

The recording of these events helps monitoring key safety 

performance indicators. The ASMT provides candidate events 

which are suitable to be considered as genuine infringements. 

These candidate events are often non-genuine due to different 

circumstances, such as noise in the vertical profile of the aircraft 

trajectories. The process of filtering genuine events from the 

initial population of candidate is an important step for accurately 

reporting on the safety performance indicators. This paper 

presents the workflow followed for deploying XGBoost for 

discriminating between genuine and non-genuine events within 

PERSEO, which works as the Automatic Safety Monitoring Tool 

for ENAIRE. Results show a significant increase on the detection 

performance of the separation minima infringements, which can 

facilitate larger analysis due to an increment of the detection 

precision while maintaining its sensitivity.     

Keywords- safety performance, xgboost, asmt, separation 

minima infringement, PERSEO 

I. INTRODUCTION 

Safety is paramount in Air Traffic Management. As such, 

Air Navigation Service Providers (ANSPs) are subject to the 

provisions under the Commission Implementing Regulation 

(EU) 2019/317 of the European Commission [1]. These 

provide the legal framework for the ‘Performance and Cost 

Scheme’ under the Reference Period 3. The framework 

establishes the basis for the performance targets for the Key 

Performance Areas of Safety and Capacity, among others. 

Such regulation establishes the indicators for monitoring 

safety at ANSP level, and among them, the rate of separation 

minima infringements (SMI) within the airspace where the air 

navigation service provider provides air traffic services, 

calculated as the total number of separation minima 

infringements with any contribution from air traffic services, or 

Communication, Navigation and Surveillance (CNS) services 

with a safety impact divided by the total number of controlled 

flight hours within that airspace.  

The reporting of this indicator is facilitated through the 

identification of SMIs automatically. This is detailed in the 

Acceptable Means of Compliance (AMC) and Guidance 

Material (GM) for the implementation and measurement of 

Safety Key Performance Indicators (SKPIs) [2]. The AMC 

established the basic components of automated safety data 

recording systems, which are commonly known as Automatic 

Safety Monitoring Tools (ASMT) [3].  

PERSEO is a multipurpose tool developed by CRIDA 

whose objective is to facilitate the data-driven decision-making 

processes related to Air Traffic Management in ENAIRE 

through the exploitation of multiple conformed data sources.  

Among other capabilities, PERSEO includes an ASMT 

which currently fulfils the regulatory requirements for 

ENAIRE. The PERSEO ASMT is capable of exploiting 

surveillance and flight data in order to detect SMIs, and 

provides a user-friendly interface in order to select genuine 

events and discard non-relevant ones.  

PERSEO ASMT core processes analyse all potential 

interactions between aircraft within the airspace controlled by 

ENAIRE to detect separation minima infringements. The most 

common use cases are the detection of SMIs in En-route and 

Terminal airspaces. In these airspaces, a SMI occurs if the 

horizontal and vertical distances of a pair of aircraft fall below 

given thresholds. These thresholds are 5NM and 3NM 

respectively for the horizontal distance minima, and 1000ft for 

the vertical distance. 

As it has been said, the core process of the PERSEO ASMT 

computes the horizontal and vertical distances for all potential 

pairs of aircraft that have flown in the airspace controlled by 

ENAIRE following a pure geometric approach. The track 

timestamp acts as a common variable to link the trajectories.  

The horizontal accuracy of the surveillance systems allows 

the identification of horizontal infringements with high 

confidence levels. However, the altitude track data is provided 

by the surveillance with a granularity of 100ft (as given by the 

aircraft Mode-C), and in addition, anomalies may appear that 

can cause “fluctuations” in the recorded pressure altitude. 

Consequently, many interactions fulfil the geometric 

conditions of being a SMI when actually they are not actual 

SMIs. These kinds of situations are usually induced by radar 

track’s anomalies, as previously mentioned.  



The PERSEO ASMT core algorithm implements different 

filtering steps (similar to those presented in [4]) in order to 

mitigate the detection of false SMIs. These filters allow to 

make the tool functional, but the analyses still required a post-

filtering of false detections. The safety analyst can always 

access to the entire population of candidate SMIs.  

 For the sake of continuous improvement of the tool and the 

facilitation of larger safety analysis [5] without the need of 

human intervention for SMI post-processing, the PERSEO 

ASMT pursued the introduction of a supervised classifier to 

discriminate between genuine and non-genuine automatically.  

This paper presents the methodology, results and the 

architecture in production of the supervised classifier.  

II. APPLICATION OF THE CRISP-DM METHODOLOGY 

The challenge is addressed as a typical data science 

process, following the CRISP-DM (Cross Industry Standard 

Process for Data Mining) methodology [6]. The methodology 

comprises the following stages: Problem Statement, Data 

Understanding, Data Preparation, Modelling, Evaluation, and 

Deployment.  

A. Problem Statement 

1) Problem requirements 

The goal of the PERSEO ASMT is to provide to the safety 

practitioner a list of genuine SMIs that occur within a given 

period and airspace, minimising the number of non-genuine 

ones. 

The scope of the problem is limited to SMI that occurred 

within Spanish En-route airspace, i.e., above 24,500ft (FL245). 

This limitation was included to introduce in a controlled 

manner the new technical component to the process.  

In addition, the SMIs between military flights were 

excluded as the performance of military differs from the 

commercial aircraft. For example, a sharp dive is a very 

common manoeuvre for military aircraft, but if it appears in a 

commercial aircraft vertical profile, it implicates either a 

fluctuation or an accident. 

The problem was addressed as a classification problem, 

where the output of the model is to determine whether a given 

SMI is genuine or not. In this regard, ENAIRE Safety 

Monitoring Team provided a list of SMI for the considered 

period that was treated as the ground truth.   

The model should work in a daily basis, embedded within 

the extraction, transformation and loading processes that feed 

CRIDA’s Data warehouse (DWH). An initial description of the 

data model which supports the ASMT function is provided in 

[7].  

In addition, the model should be capable of working with 

the data already stored, and these data (from 2013) shall be 

retrofitted with the output of this model. This poses a 

limitation, as no new data could be used, and data 

transformations feeding the model should be kept to a 

minimum.  

2) Evaluation of the Baseline Performance  

The first step is to evaluate the current performance of the 

filters that are applied to the output of the PERSEO ASMT 

core processes, considering the ground truth provided by 

ENAIRE. This dataset is called from now on baseline. The 

output of the PERSEO core processes is denominated 

interaction.  

The evaluation of a classification problem relies on a 

reliable identification of True Positive (TP), i.e., genuine cases 

to be shown. The genuine cases are known from the ground 

truth provided by ENAIRE.  

Considering the variables for the evaluation the following: 

• TP: true positive, interaction correctly marked as 

genuine SMI. 

• FP: false positive, interaction wrongly marked as 

genuine SMI. 

• TN: true negative, interaction correctly marked as 

non-genuine. 

• FN: true negative, interaction wrongly marked as non-

genuine. 

The evaluation metrics are the followings: 

Sensitivity or true positive rate (TPR): indicates the 

proportion of genuine detected SMIs from the whole 

population of genuine SMIs.  

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity or true negative rate (TNR): indicates the 

proportion of cases that are correctly marked as negative (non-

genuine SMI) from the non-genuine baseline sample. 

𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

False positive rate (FPR): indicates the proportion of cases 

that are wrongly marked as positive from the non-genuine 

baseline detections. 

𝐹𝑃𝑅 =  
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

Precision: indicates the proportion of correctly detected 

positives from the population marked as genuine. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

F1 Score: is a measure of a classification accuracy, by 

combining the precision and sensitivity scores.  

F1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗ 𝑇𝑃𝑅

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑇𝑃𝑅
 

TABLE I. BASELINE CLASSIFIER PERFORMANCE 

 Sensitivity Specificity FP Rate Precision F1 

Sample 86.6% 69.4% 30.6% 71.4% 78.1% 

It can be seen from the results reported in TABLE I that the 

baseline classifier had an 30.6% of FPR, and a F1 score if 
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78.1%. These figures made that the Precision score fell to 

levels that required a lot of post-analysis to detect genuine 

SMI, as the practitioner could always access to all the 

population of interactions (candidate SMIs).   

B. Data understanding – Taxonomy of Cases 

The second step was to understand the underlying cases 

that might cause the appearance of non-genuine SMIs among 

the detected interactions.   

The team carried out an analysis on a large sample of 

interactions for this purpose. The analysis resulted in a 

taxonomy of the different cases that characterises an interaction 

in its vertical layer. It is summed up in TABLE II, where it is 

also shown whether those interactions should be initially 

considered as genuine or not.   

The following subsections provide more details for the 

categories A-E.  

TABLE II. TAXONOMY OF CASES 

Category Definition Genuine? 

A 
Tracks affected by fluctuations or other 

kind of anomalies 
0 

B1 

Flight established at FL XX100 o 
XX900 ft during a short period of time: 

between cruising flights (including 
holding pattern) 

0 

B2 

Flight established at FL XX100 o 

XX900 ft during a short period of time: 

at least one of them is climbing or 
descending (including holding pattern) 

1 

C Flight established at XX100 o XX900 ft 0 

D 
At least one of the two flights is 

climbing or descending 
1 

E Small infringement and short duration 1 

M Between military flights Out of the scope 

V Between VFR (visual flight rule) flights. Out of the scope 

Level Bust Level Bust 1 

1) Case A 

In this case, the geometric SMI is produced due to 

anomalies in the track. Therefore, it is not a genuine SMI. 

Most of the anomalies appears in the vertical plane, this is, 

a fluctuation in the flight level. They could be small 

fluctuations of (100ft-200ft) or larger ones (200ft to 1000ft), 

for example.  

An example of this case is shown in Figure 1. It illustrates 

the visual output of the PERSEO ASMT HMI. On the left-hand 

side of the figure, it can be observed the geographical evolution 

of the trajectories involved in the interaction. The right-hand 

side shows the altitude of both trajectories, the horizontal 

separation at the centre, and the vertical separation at the 

bottom. It can be seen that vertical minima suffers a jump from 

1000ft (no separation infringement) to 500ft (separation 

infringement) in just one track. This is considered a non-

genuine SMI and a fluctuation. 

2) Case B 

As it has been said previously, the Mode C of the aircraft 

reports the aircraft pressure altitude at intervals of the closest 

100ft. Therefore, established flights can cruise with a 100ft 

deviation with respect its cleared level, it could be caused by 

various reasons, and it is hypothesised in this paper that this 

might be due to two different causes: 

a) Case B1 – Mode C lack of precision 

In the attempt to have the criterion as clear as possible, the 

category B1 is further divided into 3 groups. Figure 2 presents 

a simple sketch of them. 

The red line represents the track with anomalies, the blue 

one is the other flight participating in the interaction, and the 

light red rectangle indicates the period of separation minima 

infringement. The different cases presented in the 

aforementioned figure are described as follows: 

 
Figure 1. Case A – Vertical track fluctuations 

 
Figure 2. Case B1 – Instrumental Lack of precision 

 

Figure 3. Example of Case B1 
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• B1: the “classic” one, with a valley in the middle of the 

cleared level (in cruise phase). This is illustrated with 

an example in Figure 3. 

• B1*: shortly after the valley, the flight starts moving in 

the opposite direction. The second B1* example in 

Figure 2 shows a flight (red line) which has descended 

100ft and immediately after the valley, it starts 

climbing. The reason of considering this case as non-

genuine is because when an aircraft is planned to 

climb, it is unlikely that the pilot would decide to 

descend first. The first B1* example is actually the 

same as B1, but it is included in this group due to the 

global form it has, which could induce some doubts. 

• B1**: it is similar to B1* but for descents. 

b) Case B2 – Potential Pilot or ATC Actions 

The category B2 is also split in three subcategories. The 

SMI always appears in the first segment of a descent or the last 

segment of a climb. These cases are considered as genuine 

SMIs because the infringed segment in all 3 groups seems to be 

the product of a very slow climb or descent.  

The reason of their appearance could be intentional, in 

order to wait until the minimum horizontal separation is 

reached before clearing further a descent or a climb (in order to 

avoid further reducing the vertical separation while the 

horizontal one is already infringed). The safety practitioners 

considered that these might be genuine, and that should be 

assessed in a case by case, so this should be shown by the 

classifier.  

• B2-: it refers to a “classic” B2 but with a short 

fluctuation in between. The fluctuation is irrelevant 

because it is not the cause of infringement. 

• B2--: “Classic” B2. 

• B2---: Similar to B2-, the only difference is instead of 

a peak it is a valley. An example of this subcase is 

illustrated in Figure 5. 

3) Case C-E 

These three cases are simpler in their conception, so they 

described in this subsection together.  

• Case C: A flight could be established during the 

whole or most of cruising phase at XX1 o XX9 ft, 

(example FL311, FL309 respectively). It is similar to 

the Case B1. An example is illustrated in Figure 6. 

• Case D: Typical SMI when an aircraft or both change 

their flight levels. An example is illustrated in Figure 

7. 

• Case E: The infringement is slight and with a short 

duration, and therefore, its degree of safety relevance 

is also small. Usually, D cases usually also presents 

the characteristics of an E case. An example is 

illustrated in Figure 8. 

 
Figure 4. Case B2 – Potential Pilot Actions 

 

Figure 5. Example of Case B2--- 

 

Figure 6. Example of Case C 

 

Figure 7. Example of Case D 

 

Figure 8. Example of Case E 
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The other remaining cases are between military flights, 

flights under VFR and Level Busts. The first and the second 

are not discussed in this paper as they fall out of the scope, 

whereas the latter has been widely discussed in different papers 

and safety notices [8].    

C. Data Preparation 

1) Selection of Sample for Training and Testing 

The data preparation phase should abide to the constraints 

that were detailed in Section II.A.1). In this regard, the dataset 

for training the supervised classifier (see next section) was 

selected including the genuine dataset provided by ENAIRE. 

A subset of genuine cases was easily identifiable from 

the dataset provided by ENAIRE, but the sample was deemed 

too small for training. In addition, it should be noted that only 

SMIs that are categorised as A (Alpha) or B (Bravo) by 

applying the Risk Assessment Methodology of 

EUROCONTROL should be reported within the SKPI. In this 

sense, this dataset was biased towards these types of incidents, 

so it should be completed with SMIs which are considered as 

non-safety relevant. Examples of these could be when the SMI 

is infringed when the aircraft are already diverging (i.e. the 

horizontal distance has already reached its minimum).    

On the other hand, the interactions population as 

provided by the PERSEO ASMT core processes was much 

larger. A randomly selected and balanced sample, discarding 

the genuine SMIs provided by ENAIRE was selected and 

labelled following the previous taxonomy.  

1) Selection of Parameters 

The current PERSEO ASMT core process is embedded in a 

larger Extract, Transform and Load (ETL) process, which is 

run in a daily basis and supports the entire pipeline for 

CRIDA’s DWH [9].  

The inclusion of additional transformation processes to 

those already existent was a potential option, but should be 

considered very carefully. These processes went through 

quality verification checks before their deployment in 

production, and their modifications are a last-resource option.  

 As a result, only accessible data during this process are 

considered. In this sense, the PERSEO ASMT core processes 

access to the surveillance information, and therefore, the 

transformation of this information was considered key.  

TABLE III presents the series of features that were finally 

selected for training the model. Some of them (marked as 

Initial PERSEO ASMT Core Process) are an output of the 

core process for detecting the interactions between aircraft. 

Among them, the most relevant are Convergency and Track 

Anomaly. These are the result of transformation processes that 

try to find the convergence of two aircraft before their closest 

point of approach (CPA); and whether any of the tracks that 

compose the potential SMI present a fluctuation.  

The rest of the variables are transformations that are easily 

obtainable if the SMI period is available by using aggregation 

functions, powered by the database engines. These are marked 

as Transformed from Surveillance after the core PERSEO 

ASTM Process.  

Looking at the different cases of the taxonomy, the 

following considerations were made for the selection and 

generation of the new features: 

• The percentages of horizontal and vertical separation 

are useful to detect the presence of conflict induced by 

TABLE III PARAMETERS CONSIDERED FOR THE MODEL (THE LAST COLUMN 

INDICATES THE ORIGIN OF THE DATA) 

Parameter’s 

name 

(In Spanish) 

Parameter Type  

FLTTYP1 Flight type of flight 1 1: M or S 

0: rest 

In
itial P

E
R

S
E

O
 A

S
M

T
 C

o
re P

ro
cess 

FLTTYP2 Flight type of flight 2 1: M or S 
0: rest 

%H (x_H) Horizontal separation/ 

Horizontal Separation 

minima 

Percentage 

%V (x_V) Vertical separation / 

Horizontal Separation 

Minima 

Percentage 

Alt. (Alt_) Altitude Numeric values 

(discrete FL) 

Anomalías en 

traza 

(Anomal_asEn

Traza) 

Original track anomaly 

identified by PERSEO. 

1: no anomaly 

2: fluctuation (100) 

3: fluctuation (500) 
4: garbling 

Convergente Convergency state when 

the SMI starts.  

1: convergent  

0: divergent 

Duración (s) 

(Duracion_s_)  

Duration of the SMI Numerical values 

Duración 

crítica (s) 

(Duracion_crit

ica_s_)  

Duration of from instant 

of min. separation until 

the end of the SMI 

Numerical values 

Mean_alt_A Mean of the modulus 
operation of the FL and 

10, of Flight 1 during 

𝑡𝐶𝑃𝐴 ± 30s 

Numerical values T
ran

sfo
rm

ed
 fro

m
 S

u
rv

eillan
ce after th

e co
re P

E
R

S
E

O
 A

S
T

M
 

P
ro

cess 

Mean_alt_B Mean of the modulus 

operation of the FL and 
10 for Flight 2 during 

𝑡𝐶𝑃𝐴 ± 30s 

Numerical values 

std_vSep Standard deviation of the 

vertical separation during 

𝑡𝐶𝑃𝐴 ± 30s 

Numerical values 

mean_vSep Mean vertical separation 

during 𝑡𝐶𝑃𝐴 ± 30s 

Numerical values 

std_hSep Standard deviation of the 
horizontal separation 

during 𝑡𝐶𝑃𝐴 ± 30s 

Numerical values 

mean_hSep Mean horizontal 

separation during 𝑡𝐶𝑃𝐴 ± 

30s 

Numerical values 

Genuine Output of the classifier 1: real conflict 
0: not conflict 
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fluctuation. For example, fluctuations have typical 

values between as 100 ft and 500 ft in the vertical 

plane. 

• The mean altitude of a flight within the 𝑡𝐶𝑃𝐴 ± 30s can 

provide the unit number of the mean flight level. It 

detects the vertical changes. 

• The mean and standard deviation of the two 

separation measurements can detect whether the 

flights have experienced any kind of fluctuations 

during the 60 s range around 𝑡𝐶𝑃𝐴. 

These are illustrated by means of Figure 9. 

III. MODELLING 

The algorithm used for the classification is XGBoost 

(eXtreme Gradient Boosting), a supervised machine learning 

algorithm built within the gradient boosting framework [10].  

The selection of XGBoost was driven by its performance in 

classification tasks, but also to the ease which it can be 

deployed within JAVA-based ETL pipelines (see Section V). 

As a boosting algorithm, it benefits from working with a 

sequence of trees, one after another. This way of training 

enables the improvement of the model by correcting the 

predictions from the previous tree in each step of the training. 

And it reduces the error by reducing the bias, this is, the result 

will be closer to the real output but more disperse [11]. 

However, XGBoost presents many differences, in some 

case, enhancements compared to the original gradient boosting, 

such as: 

• the possibility of setting different objective function 

• the presence of regularization term to prevent 

overfitting 

• the missing values handling  

• the use of parallel boosting: the parallelisation does 

not refer to the train of independent tree in parallel 

like Random Forest. Instead, it happens within each 

tree of the model.  

The XGBoost algorithm also provides a large number of 

hyperparameters that characterise the training process. They 

have to be tuned to acquire an acceptable performance. For that 

purpose, the Python Scikit-learn package [12] was used (see 

GridSearchCV)  for the hyperparameter tuning. The model was 

trained for all possible combination for the defined 

hyperparameters’ values, and the associated scores stored, 

selecting at the end the hyperparameters which provided the 

best one. The parameters and the selected range for analyses 

were:  

• Objective function: “binary: logistic”. This function is 

prepared for binary classification problem. The model 

trained with this function gives the predicted probability 

as the variable to determine the predicted output, 

depending on the threshold that is considered.  

• max_depth: it is the maximum depth that a tree can 

have. The range was [3, 5, 7, 9] 

• min_child_weight: minimum number of cases in a node 

to stop further split the sample. The range was [1, 3, 5] 

• eta: it is the learning rate of the model. Adjustment step 

size. The range was [0.05, 0.1, 0.15, 0.2] 

• Gamma: overfitting control parameter. It prevents the 

trees from fitting to noise. The range was [0, 0.1, 0.2, 

0.3, 0.4, 0.5] 

• Subsample: sample size used in each tree. It also 

controls overfitting. The range was [0.6, 0.7, 0.8, 0.9, 1]  

• colsample_bytree: percentage of features (inputs) used 

in each tree. The range was  [0.5,0.6, 0.7, 0.8, 0.9, 1]  

The rest of hyperparameters were set to their default values. 

As the dataset is balanced, it was not necessary to add the 

weight hyperparameter. The hyperparameters that provided the 

best performance score were selected (marked in bold in the 

previous enumeration). 

IV. RESULTS EVALUATION 

For testing the classifier with a new sample, a sample of 

300 interactions classified with the new model were analysed. 

This sample was not used during the phase of training and 

initial testing.  

Figure 10 and Figure 11 present the output of the XGBoost 

model for the analysed sample, which is a probability between 

0 and 1 of the case being a genuine SMI. Figure 10 presents the 

case for those interactions that were not marked initially as 

anomalous, whereas Figure 11 illustrates those that were 

marked as anomalous by the PERSEO ASMT core process.  

The blue dots are cases that the team considered to be a 

genuine SMI, whereas the red dots are non-genuine SMIs. It 

can be directly observed that the sharpest improvement is in the  
Figure 9. Graphical illustrations of the features 

6



correct detection of non-genuine SMIs from those that passed 

the first filter.  

TABLE IV presents the performance metrics for the baseline 

filters versus the XGBoost, should we define a 0.5 threshold 

for discriminating between genuine and non-genuine SMIs. It 

can be observed the sharp increment in performance provided 

by the XGBoost layer. 

TABLE IV. PERFORMANCE OF XGBOOST VERSUS THE BASELINE, CONSIDERING 

A THRESHOLD OF 0.5 

 Sensitivity Specificity FP Rate Precision F1 

Filters 

Baseline 
96.5% 69.5% 30.5% 73.1% 83.2% 

XGBOOST 96.5% 96.2% 3.8% 95.8 96.1% 

The FP rate decreased a 27%, whereas the precision 

increased 22 percentual points. In practical terms, this meant 

that, for this specific sample, the safety analyst only had to 

discard 1 false positive per every 25 candidates, whereas for 

the previous system, this was approximately between 1 per 3 

and 1 per 4. This performance was deemed acceptable by the 

safety team and therefore, the development was stopped at this 

point without further iterations on the model. The SMIs shown 

in the previous figures include all types of SMI. The majority 

did not have any safety impact. 

V. DEPLOYMENT 

The last step of the methodology presented in the 

introduction of Section II is the deployment of the product in 

production. As it has been said, XGBoost was partially selected 

considering the advantages that it presented for its deployment. 

CRIDA DWH’s data ingestion process is supported by data 

integration tools that are JAVA-based.  

In order to accelerate the deployment of the model in 

CRIDA’s data pipelines, the team followed the process 

presented in Figure 12.  

The training and testing of the model were conducted in a 

development environment, powered by Python. In the 

meantime, the specifications for wrapping the model within the 

pipelines were provided to the data engineering team. As soon 

as the model was validated and its performance accepted, the 

model was deployed in the data pipeline and the orchestration 

process (i.e., updating prior registers and launching it in a daily 

basis) was triggered.  

Also, in parallel, the new visualisation requirements were 

elicited and tested. A key requirement was that all the 

information should be available for the safety practitioner. The 

practitioner can select the threshold model for showing or 

hiding candidate SMIs. It can be set to a higher threshold, 

which will guarantee fewer false positives. On the other hand, 

the threshold could be relaxed in order to identify more 

genuine SMI, at the cost of more false positives. 

In addition, it has been defined an automated labelling 

through PERSEO ASMT Core, in order to update the model 

once there is a sufficient sample of new labelled data, which 

will contribute to a continuous improvement of the model 

VI. CONCLUSIONS 

Safety is paramount in Air Traffic Management. In this 

regard, ANSPs in Europe should report in a yearly basis the 

ratio between Separation Minima Infringements with a safety 

impact divided by the total number of controlled flight hours 

within their controlled airspaces.  

For this purpose, the Automatic Safety Monitoring Tools 

were developed to detect automatically SMIs. PERSEO ASMT 

provides a functionality for detecting potential SMIs between 

flights, including a filter for showing only genuine SMIs.  

This paper presented the workflow followed for deploying 

a Machine Learning model (XGBoost) in production, also 

retrofitting for all the data available (since 2013) to increase the 

detection performance of SMIs.   

The paper presented a taxonomy of vertical anomalies in 

the tracks, features that were selected for the model as well as 

the hyperparameters selected.  

 
Figure 10. Output from the model for interactions not previously 

characterised as anomalous.  

 
Figure 11. Output from the model for interactions characterised as 

anomalous 
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The performance of the model was verified against the 

baseline performance, with a sharp increment on the precision 

of the model, gaining full acceptability by the teams in charge 

of its development and its exploitation. To illustrate the gains, 

the FPR decreased by a 27%, meanwhile the precision 

increased by a 22%.  

The full deployment of these technologies can pave the way 

for an effective and trustable deployment of Safety Intelligence. 

For example, the identification of trends for eliciting 

recommendations in a large basis can only be supported by 

data in the origin with a very high level of integrity. In 

addition, these studies support SESAR funded project such as 

FARO [13].  
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Figure 12. Deployment of the model 
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