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Abstract—Demand upon the future Air Traffic Management
(ATM) system will possibly grow to exceed available system ca-
pacity, pushing forward the need for automation and digitisation
to maintain safety while increasing efficiency. This work focuses
on a manifestation of ATM safety, the loss of separation (LoS),
and its analysis via Natural Language Processing (NLP) and
Data-Driven Methods (DDMs), able to extract meaningful and
actionable information from the LoS-related data. These data
are, primarily, safety reports and ATM-system data (e.g, flights
information, radar tracks, and Air Traffic Control events).

Current research in this field mainly exploits NLP to categorise
the reports and DDMs to predict safety events. The limitation of
current NLP-based approaches is that the considered categories
need to be manually annotated by experts and general taxonomies
are seldom exploited. At the same time, current DDMs are rarely
able to support safety practitioners in the process of investigation
of an incident after it happened.

To fill these gaps, the authors propose to (i) perform Ex-
ploratory Data Analysis on safety reports combining state-of-
the-art techniques like topic modelling and clustering, then to (ii)
develop an algorithm able to extract the recent Toolkit for ATM
Occurrence Investigation (TOKAI) taxonomy factors from the
free-text safety reports based on Syntactic Analysis, and finally
to (iii) develop a DDM able to automatically assess if the Pilots
or the Air Traffic Controller (ATCo) or both contributed to the
incident, almost immediately after the LoS.

The results on LoSs reported in the public database of the
Comision de Estudio y Analisis de Notificaciones de Incidentes
de Transito Aéreo (CEANITA) support the authors’ proposal.

Keywords—ATM; Safety; Digitisation; Resilience; Resilient
Performance; Data-Driven Models; Natural Language Process-
ing; Safety Reports; Text Mining; TOKAI; Taxonomy.

I. INTRODUCTION

Demand upon the future Air Traffic Management (ATM)
system will possibly grow to exceed available system capacity
at the same time as the economic challenges for both service
providers — i.e., Air Navigation Service Providers (ANSPs)
and aircraft operators — will manifestly grow in intensity [/1].
The Single European Sky ATM Masterplan [2] defines the
philosophy and concept of operations that will lead to the
modernisation of the European ATM system. The goal is
to provide the system with a sustainable capacity that is
able to absorb this growth through an efficient and effective
management of the ATM system, maintaining safety while
increasing efficiency. A cornerstone of the ATM Masterplan is
to further deploy automation and digitisation tools, leading to
a significant integration of human and technical systems [3].
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Therefore, organisations need to adopt new approaches to
understand system safety performance of an increasingly com-
plex operational environment with new actors and stakeholders
as well as maintain extant approaches [4].

How organisations are able to quantify and understand the
impact of changes in the ATM system is the focal research
object of the FARO project - saFety And Resilience guidelines
for aviatiOn. In this work, which is framed within the context
of FARO, the authors focus on a manifestation of ATM safety,
the loss of separation (LoS). There are two main sources of
data which can inform about what happened during a LoS:

o the Safety Reports produced by states’ Civil Aviation
Authorities and ANSPs after investigating the safety-
related events;

o the Automatic Safety Monitoring Tools (ASMTs), which
allow the monitoring and recording of safety-related
events. These tools are usually augmented with ATM
system data, which gather surveillance (e.g., flight tracks)
and operational data (e.g., ATC events) [].

The LoS events considered in this study are the ones reported
in the public database of the Comisién de Estudio y Analisis de
Notificaciones de Incidentes de Transito Aéreo (CEANITA).

This work exploits Natural Language Processing (NLP) and
Data-Driven Methods (DDMs) towards the automation of both
the analysis of the above-mentioned reports and, partly, the
early estimation of the investigation results through ASMTs
data, for safety and resilience purposes.

For what concerns the application on NLP to safety re-
ports, research has largely focused on developing models and
algorithms for categorising incident reports [6]—[9]. All of
these works rely on an initial set of labels and training data
that include incident reports previously labelled by domain
experts. The biggest limitation of this approach is the lack of
generality: it would take substantial effort to generate a new set
of labels and training data. In this framework, the importance
of referring to a common taxonomy became evident. On one
hand, tools like the Toolkit for ATM Occurrence Investigation
(TOKAI) have been developed to generate structured safety
data [[10], and their outcomes have been deeply analysed [11]];
on the other hand, NLP techniques have been applied to cat-
egorise the safety reports according to taxonomy factors [12].
Another limitation of the categorisation approach is that it
just aims at automating a task performed by domain experts,
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without trying to add further knowledge or to discover un-
known patterns. To overcome this limitation, in recent years
researchers have focused on topic modelling [13]]-[16] and
similarity clustering [13]], [[17], which have been shown to
be extremely valuable tools. As regards the application of
DDMs in the ATM scope, research has focused on a number
of different fields, such as taxi-out time prediction [18]], [19],
trajectory prediction [20], [21], air traffic flow extraction [22],
[23]], and flight delay prediction [24], [25]. In the safety scope,
some relevant applications of DDMs are proposed in literature
to predict safety events or performance [26]], [27], or to provide
safety metrics [28]] or accident precursors [29]. However,
there are very few references aiming at supporting safety
practitioners in facilitating the investigation of an incident after
it happened but before it is reported [30].

To fill the current gaps in the literature, in this work the
authors propose a threefold approach:

o First, an Exploratory Data Analysis (EDA) was per-
formed on safety reports combining state-of-the-art tech-
niques like topic modelling and clustering.

o Then, for the first time, an algorithm able to extract
TOKAI taxonomy factors from the free-text safety reports
was developed, based on Syntactic Analysis.

o Finally, for the first time, an Automatic Contribution
Assessment model was developed, able to leverage data
to assess if the Pilots or the Air Traffic Controller (ATCo)
or both contributed directly to the incident, almost imme-
diately after the LoS and before investigation.

The first two steps of the proposed approach focus on the
mining of free-text safety reports through NLP techniques,
with the purpose of identifying hidden patterns (e.g., recurrent
behaviours during LoS events) via topic modelling and cluster-
ing and of associating patterns of behaviour to TOKAI taxon-
omy factors (e.g., perception, conformance to procedures, or
memory). The choice of the TOKAI taxonomy is due to many
reasons. The first one is that it is particularly suited to allow
aggregation at different levels. The second one is that it makes
a significant shift from traditional causal taxonomies based
on negative perspectives (i.e., describing errors or failures)
thanks to its neutralised language: TOKALI factors are neither
negatively nor positively oriented, so they can be ideally
used to explain both ordinary work situations and safety
occurrences [11]. This is aligned with a basic principle of
Resilience Engineering: successes and failures do not emerge
from different pathways through the work system, but the
same set of conditions can evolve to either [|31]], [32]]. The last
reason is that the TOKALI, as developed by EUROCONTROL,
is intended to harmonise future investigations and to allow
ANSPs to share lessons from ATM occurrences: the automatic
identification of TOKALI factors could help harmonising not
only future analyses, but also the existing ones.

The last step of the proposed approach aims at partially
automating the process of contribution assessment (which may
take weeks to be completed by human practitioners) based
on the ATC events registered in temporal proximity to the
LoS (which are readily available). Indeed, there are a number
of safety-related occurrences which went unnoticed by the
old systems, which can now be identified thanks to the new
ASMTs. As a consequence, probably many more LoSs will
need to be investigated and studied in the future. Since human
review of incidents is an extensive process, providing the
ability to partially estimate the results of these investigations
timely (a few minutes after the LoS) would facilitate the
safety practitioners in prioritising the investigations and in
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understanding potential precursors of these LoS events.

II. SCOPE OF THE WORK

The scope of this work is to automatically extract meaning-
ful and actionable information from CEANITA LoS reports
and related contextual data (i.e., radar tracks of the aircraft
involved, flights information, and related ATC events) with a
particular focus on human contributing factors. To achieve this
scope, a threefold approach was applied.

o First, an EDA was performed in order to get insights
into the incidents phenomena. Initially, the most recurrent
topics in the corpus of CEANITA LoS reports were auto-
matically identified using unsupervised NLP techniques,
in particular Topic Modelling [33]]. The prevalence of
the different topics in each report was then computed,
obtaining numerical features able to describe at high level
the content of the reports and compare them without the
need to actually read and understand them. Furthermore,
the combination of the above-mentioned features with
other structured information extracted from the very same
reports led to the development of a Cluster Analysis [34],
which automatically grouped incidents that appeared to
be similar.

e Then, an algorithm able to extract TOKAI taxonomy
factors from the free text of CEANITA reports was
developed, based on Syntactic Analysis. Every CEANITA
report contains in its conclusions a free-text description
of the main actions performed by ATCo and Pilots before
and after the incident. Many of these actions are crucial
factors in the dynamic of the LoS. Thus, it can be
fundamental to be able to automatically extract these
actions from the free-text conclusions and then to classify
them according to a standard taxonomy (in our case the
TOKALI one). Indeed, this would enable the application
of quantitative-analysis techniques (e.g., to structure a
proactive risk-assessment strategy) on these actions [[11].
The authors used state-of-the-art tools for Syntactic Anal-
ysis [35] to estimate the occurrences of actions associated
to each TOKAI taxonomy factor, together with their
subject (i.e., usually Pilots or ATCo).

o Finally, an Automatic Contribution Assessment model
able to leverage the ATC events to assess whether the
Pilots or the ATCos or both contributed to the incident
was developed. The model was able to assess contribution
before (i.e., 10 minutes after the incident) human evalu-
ation (which is usually concluded even weeks after the
incident). This data-driven model [36] leverages recorded
ATC events and other contextual data (i.e., radar tracks of
the aircraft and flight information) to make its prediction.

III. DATA DESCRIPTION

For the purpose of this study there were two main data
sources available: CEANITA reports (see Sections and
structured data from ENAIRE-CRIDA data warehouse, con-
taining contextual information about the LoSs together with
ATC events (see Section [l1I-B).

A. CEANITA LoS Reports

The considered CEANITA LoS reports consist of 89 safety
reports, written in Spanish and published by Spanish Safety
Aviation Agency (AESA), covering safety-related occurrences
that happened in the Spanish airspace between January 2018
and July 2019. These incidents reported by CEANITA are just
a subset of the total amount of losses of separation, where
high-severity incidents are over-represented.

o
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The initial sections of these reports are written in fixed
formulas or tabular format, enabling the direct extraction of
some categorical or numerical variables, such as:

o the main causes: the most frequent ones in the corpus
are wrong clearance (52%), deviation from procedures
(22%), wrong or no resolution (17%-15%), coordination
problems (17%), and late or no detection (15%-16%) —
note that multiple causes are possible;

o the airspace class: most of the reported incidents hap-
pened in class C, D (40% each), and A (11%), while
only 6% in G and 3% in E (classes assigned according
to the ICAO classification [37]);

o the Pilots and ATCo contribution: Pilots contribution is
classified as direct in 36% of the cases, as indirect in
15%, and as none in 49%. ATCo contribution is, instead,
direct in the majority of cases (72%), indirect in 9% of
the incidents, and none in 19%.

The remaining part of each report is written as a free text.

B. ENAIRE-CRIDA Contextual Information

The contextual information, arranged in structured form,
was provided by ENAIRE-CRIDA. In particular, they provide
high-granularity ATM data such as flight plans, flight tracks,
and ATM-processed information about the Spanish airspace.
More precisely, two main sources were exploited:

o flight tracks and related contextual flight information

(e.g., type, speed, and heading);

o ATC events of the interactions between ATCos and the

Controller Working Position (CWP).
The integration of these sources (only needed for the develop-
ment of the DDM) led to the reduction of the sample from the
initial 89 incidents to 70, since not all the LoSs could be linked
to structured data with sufficient certainty as flights involved
in the incidents are anonymised in CEANITA reports.

IV. METHODS

This section presents the methods and tools exploited to
achieve the scope of the work (see Section [M) leveraging
the data described in Section [[II] Four main technologies
are exploited: Topic Modelling (Section [V-A), Clustering
Analysis (Section [[V-B), Syntactic Analysis (Section [[V-C),
and Data-Driven Predictive Models (Section [[V-D).

A. Topic Modelling

Topic Modelling is an NLP method initially designed by
David Blei and John Lafferty [33]]. The aim is to represent
a collection of documents in terms of a certain number or
topics (i.e., latent dimensions), calculated in a completely
unsupervised fashion, based only on the distribution of words
in the documents. Topic Modelling has already been widely
exploited in the transportation domain, since it is particu-
larly suited to summarise the main themes in a corpus of
documents [38]], [39]. The statistical intuition behind Topic
Modelling can be summarised in three points:

e A document can be defined as a set of words.

e A document contains different topics according to a

certain distribution.

e A topic can be defined through words according to a

certain distribution.

As a consequence, by observing a collection of documents,
one can empirically estimate the two distributions that fit the
observed frequencies of words in documents. In the most
widely used technique for Topic Modelling, the Latent Dirich-
let Allocation (LDA), the estimation of these distributions
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TABLE I. EXAMPLE OF SYNTACTIC ANALYSIS WITH UDPIPE FOR THE
SENTENCE “SECTOR SAU INSTRUYE A LA AERONAVE 2 A PROCEDER
DIRECTO A EL PUNTO LOTEE” (“SECTOR SAU CLEARES AIRCRAFT 2
TO PROCEED DIRECT TO THE POINT LOTEE”). THE MEANING OF “PART
OF SPEECH” AND “DEPENDENCY” ELEMENTS IS STANDARDA.

[ Sentence || Lemma [ Part of Speech | Dependency |
Sector sector noun nsubj

SAU SAU propn appos
instruye instruir verb root

a a adp case

la el det det
aeronave aeronave noun obj

num nummod

a a adp mark
proceder proceder verb advcl
directo directo adj advmod:Imod
a a adp case

el el det det

punto punto noun obl

LOTEE LOTEE propn appos

https://universaldependencies.org/u/dep/all.html

is based on the Dirichlet probability distribution [[13[], [14].
This intuitive framework also originates a topic-word matrix
in which each topic is represented through weights associated
to each word. This information can be used to interpret the
(otherwise unlabelled) topics.

B. Clustering Analysis

Clustering Analysis [34]] allows the grouping of data in a
database according to a definition of similarity. In this context,
Hierarchical Clustering is one of the most widely exploited
methods [40]. In particular, the agglomerative Hierarchical
Clustering, as opposed to the divisive one, was used in this
work, since it has been shown to be the most effective [40].
The idea behind the agglomerative Hierarchical Clustering
is simple: at the beginning, each point in the database is
considered as an individual cluster. Then, each cluster is
merged with other clusters until the data converge to a
single cluster. Finally, the practitioner has to select the best
number of clusters based on the knowledge of the subject, or
the intra-cluster variability, or exploiting particular statistical
metrics [41]. A crucial issue is how to map the data in the
database into a space where a definition of distance well
describes the notion of data similarity. In this case, data were
merged according to Ward’s minimum variance criterion.

C. Syntactic Analysis

Syntactic Analysis is the process of analysing a string in
natural language to identify the syntactic relations between
words. In this work, Syntactic Analysis is performed through
the UDPipe [33]], a state-of-the-art open-source library which
automatically generates sentence segmentation, tokenisation,
part-of-speech tagging, lemmatisation, and dependency pars-
ing. Models are provided for 50 languages. An example of
the output of the UDPipe library can be found in Table
A detailed explanation of the UDPipe library can be found
in [35].

D. Data-Driven Predictive Models

Data-driven predictive models are able to learn relations
between inputs (e.g., ATC events) and outputs (e.g., incident
direct contribution) based on a series of examples (i.e., histor-
ical data).

In this context two (Shallow) Machine Learning algo-
rithms, Support Vector Machines (SVMs) [42] and Random
Forests [43]], represent state-of-the-art solutions for many real-
world applications [44], [45] — at least when Deep Learning
algorithms cannot be applied due to limited data availability.
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SVMs are the most effective algorithms in the family of
Kernel Methods [42] (i.e., methods exploiting the ‘“kernel
trick” to extend linear techniques to the solution of nonlinear
problems). SVMs have a series of hyperparameters which
deeply influence their performance and need to be tuned
during the model selection phase [40]: the kernel, the kernel
hyperparameter, and the complexity hyperparameter.

Random Forests, instead, are one of the most effective
approaches in the family of the ensemble methods [43]. It is a
tree-based ensemble algorithm, combining bagging to random-
subset feature selection. In bagging, each tree is independently
constructed using a bootstrap sample of the dataset. Random
Forests add a further layer of randomness to bagging, also
changing how trees are constructed (the best split at each node
of the tree is chosen among a subset of predictors randomly
sampled at that node). Eventually, a simple majority vote is
taken for prediction. Random Forests are less influenced by
their hyperparameters [47], even if the number of trees and
features to be sampled still need to be tuned.

As just described, the data-driven predictive models need
to be tuned, but, at the same time, their performance needs to
be estimated in a rigorous statistical way, in order to estimate
their behaviour in production environment. Model Selection
and Error Estimation deal exactly with this problem [46].
Resampling techniques like k-fold cross validation and non-
parametric bootstrap are commonly exploited solutions, which
work well in many situations [46]. The idea is that the original
dataset is re-sampled once or more, without replacement, to
build three independent datasets called learning, validation,
and test set. The learning set is exploited to train the model,
the validation set to find the optimal hyperparameters (namely
the ones that lead to the optimal performance), and the test set
to estimate the performance of the final model: in this way, the
test is independent from both the learning and the validation,
so results are statically sound [48]]. Performance measures
strongly depend on the task to be solved. In this case, dealing
with classification problems, Accuracy, Confusion Matrix,
Area Under the Receiving Operating Characteristics (AUC),
F1 score, Sensitivity, and Specificity are the most commonly
used metrics [36].

Once the model is built and has been confirmed to be
sufficiently effective, it can be of interest to investigate how
this model is affected by the different input features [49], [50].
This procedure is called Feature Ranking and allows the user
to detect if the features are appropriately taken into account
by the learned models, from the perspective of the domain
experts. In particular, Feature Ranking based on Random
Forest via Mean Decrease in Accuracy (i.e., the importance
of each feature is assessed by randomly permuting the values
of the feature and measuring the resulting increase in error) is
one of the most effective techniques [51]], [52].

V. EXPERIMENTAL RESULTS

This section shows how the methods presented in Sec-
tion |[V| were exploited to achieve the scope of the work (see
Section demonstrating the effectiveness of the proposed
approach on the data described in Section Specifically,
Section presents the results of EDA, obtained first by
exploiting Topic Modelling to extract the main topics from
the CEANITA reports and then by clustering the different
incidents. Subsequently, Section presents the results of
Syntactic Analysis applied to the same reports to connect them
with the TOKAI taxonomy, validating also the quality of the
methodology. Finally, Section reports the performance of
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communication{  f ] 798
alert4 | 52.8
workload{ 393
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weather{ | 7.9
coordination4 | 6.7
military 1~ |8 5.6

fireq WM3.4

0 2 50 75 100
Number of reports (%)

Figure 1. Prevalence of each of the 12 topics of Table |lI| over CEANITA
reports.

the data-driven model in estimating who directly contributed
to the incident before the actual human evaluation.

A. Exploratory Data Analysis

As a first step in EDA, this section shows how Topic
Modelling (see Section [[V-A) can extract the main topics from
the 89 CEANITA reports.

With this technique, the reports can be organised according
to the discovered topics. Indeed, the probability of finding each
topic, namely the prevalence, can be associated to every report,
generating a set of numerical features describing the document.
The use of LDA for Topic Modelling led to the identification
of 12 main topics. This result is obtained combining both auto-
mated procedures (optimising the coherence metrics) and more
handcrafted fine-tuning (feedback from FARO operational
experts, which allowed the selection of the most significant and
coherent topics according to their domain knowledge). These
12 topics can be described by words and bigrams, to which
experts have associated representative labels (see Table [II).
Topic Modelling results allow a finer granularity than simple
descriptive analysis: while the main causes of the incident are
identified using variables described in Section [[II-A] (e.g., a
wrong ATCo clearance was responsible), topic modelling also
provides additional information (e.g., if the ATCo’s wrong
clearance was due to excessive workload or an emergency
situation).

Figure [I] shows the prevalence of each topic over the
different reports. Observing Figure [T] one can easily observe
that exogenous factors like fire or weather problems are quite
rare (only about 10% of the incidents contain one of these
topics), while workload is present in around 40% of the
reports.

At this point, as a second step of the EDA, a further analysis
was conducted to find the relation of the 12 topics with the
main causes of the incidents applying Clustering Analysis (see
Section [[V-B).

For this purpose, for each CEANITA report, a feature set
was created, composed of the prevalence of the topics, the
main causes, and the level of Pilots’ and ATCo’s contribution
to the incident. Subsequently, Hierarchical Clustering with
Ward distance was applied on the resulting dataset. After
looking at dendrograms and screeplots (i.e., the two most
common methods for cluster selection, which are not reported
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TABLE II. WORDS AND BIGRAMS OF THE 12 TOPICS EXTRACTED WITH LDA FROM CEANITA REPORTS, TOGETHER WITH THE REPRESENTATIVE LABEL
ASSOCIATED TO EACH TOPIC BY FARO’S EXPERTS (ENGLISH TRANSLATION FROM SPANISH).

[ Words/Bigrams [[ Topic
helicopter | drop water fires extinguishing coordination drop area fire
Toad work high alone workload instructions previous workload
departure to take off aircraft c[imb runway to take off aircraft rate they are departure
wind tail down-wind leg wind Teg right tail runway traffic circuit
weather adverse adverse weather detours meteorologic conditions | due to weather thunderstorm weather
runway go around 20 around to take off to land aircraft established go around
sectors sector aircraft frequency sector high coordination transfer Timit sector operations
answer received finally decided they saw communication visual contact communication
clearance course descent aircraft to descend [ descent rate sector to descend aircraft to maintain | rate descent
received coordinating confirming to confirm receipt maintaining formation sector informs receipt coordination
alert early early alert activation function activation function alert function alert
military military formation formation military aircraft defence air defence main centre military

for space constraints) together with the FARO experts, 8

different clusters were identified: A1 Perception )

. . . Flight
o Two very small subgroups are identified as particularly Ground

different from the others: one is composed of three
incidents where the main topic is “fire” (indeed, they are
the reports referred to Llutxent fire in summer 2018),
while the other contains the three incidents caused by
level bust.

o The largest cluster is mainly composed of wrong-
clearance and late-detection incidents, with clearly the
highest frequency of ATCo contribution and an interesting
high prevalence of “descent” topic.

o The fourth cluster contains incidents mainly caused by
“wrong resolution” of the ATCo, with high prevalence of
topics related to go-around, departure, and weather.

o The fifth cluster is composed of incidents caused mainly
by transfer or coordination problems. The most frequent
topics here are “sector operations” and “military”.

« Incidents in the sixth cluster are essentially due to Pilots’
errors, in particular to airspace infringement and unful-
fillment of the Visual Flight Rules (VFR).

o The seventh cluster is characterised by incidents due
to Pilots’ deviations from procedures, especially in the
landing phase (topic “traffic circuit”).

o The last cluster is composed of incidents due to ATCo
inability to both detect and resolve the LoS. This cluster
is interestingly characterised by high values of the topic
“alert”;

B. Automatic Extraction of TOKAI Taxonomy Factors

The exploitation of Syntactic Analysis (see Section
enables the association of each CEANITA report to the TOKAI
taxonomy factors. In particular, for the purposes of this re-
search, only Part A of the TOKAI taxonomy was exploited,
namely the one related to the Personnel, since the actions
reported in the conclusions are usually more related to this
subject. Table [ITI] reports Part A of the TOKAI taxonomy
factors together with their specifications [[11]] and examples of
sentences associated to the taxonomy by the developed tool.

At this point, the algorithm to link each CEANITA report
to the TOKAI taxonomy factors can be presented (see Al-
gorithm [I). Given the results of Algorithm [I] after grouping
subjects into Flight elements (i.e., aircraft, pilot, etc.) and
Ground elements (i.e., controller, sector, etc.), it is possible
to estimate for each CEANITA report how the 5 factors are
distributed, both in terms of positive and negative occurrences.

Figure [2] shows the global distribution of negative occur-
rences of each TOKAI-taxonomy factor by group of subjects.
Figure [2] suggests that the main omissions for the Flight
subjects are classified as factor A-4 and A-5 (e.g., problems
with action or conformance with rules), while for the Ground
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A-2. Memory A-5. Conformance

A-3. Decision A-4. Action

Figure 2. Global distribution of negative occurrences of each TOKAI-
taxonomy factor by group of subjects.

subjects they are mostly classified as factor A-4 and A-
1 (e.g., problems with action or perception). Interestingly,
further analysing the data, it is possible to discover that all
the problems with factor A-4 are relative to conveyance of
information, for both Flight and Ground elements.

The proposed algorithm (Algorithm 1)) could not be directly
validated in the standard way since there is no ground truth.
However, in order to validate it at least indirectly, a simple pre-
dictive model was developed to predict the main contribution
(ATCo or Pilots) in an incident based on the extracted number
of positive and negative occurrences of each taxonomy factor
(i.e., the output of Algorithm [I). A good performance of this
predictive model would indicate that the extracted information
is reasonably accurate, since TOKAI taxonomy factors should
well describe the ATCo’s and Pilots’ contribution to the event.
Specifically, for each LoS, the goal was to predict:

o the Pilots’ contribution, i.e., classified as direct or not;
o the ATCo’s contribution, i.e., classified as direct or not;

based on:

« the number of positive and negative occurrences of each
taxonomy factor (the outputs of Algorithm [T);

« the differences in prevalence between Flight and Ground
elements for each taxonomy factor;

« the airspace class (in fact, similar behaviours of ATCo
and Pilots can lead to different contribution assessments
in different airspace classes due to different regulations).

Note that ATCo and Pilots can both have direct contribution
to the incident.

Table reports the confusion matrices of the developed

predictive models. In particular, a SVM with Gaussian Kernel
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TABLE III. PART A OF THE TOKAI TAXONOMY FACTORS: SPECIFICATIONS AND EXAMPLES OF SENTENCES ASSOCIATED TO THE TAXONOMY BY THE

DEVELOPED TOOL.

[ Factor [ Specifications

[ Example ]

A-T. Perception

See - identification; See - detection; Hear - identification; Hear - detection; Perceive
visual information - accuracy; Perceive auditory information - accuracy.

Sector CAO authorised aircraft T without detecting aircraft 2.

A-2. Memory Remember to monitor or check; Remember to act; Remember previous actions; Recall | Aircraft 2 was authorised by the Sector, not remembering
information from working memory; Recall information from long-term memory. presence of Aircraft 1.

A-3. Decision Judge/Project; Decide/Plan. APP LEMG planned the approximation sequence incorrectly.

A-4. Action Select/Position manually; Convey/Record information. Aircraft T did not communicate its position correctly.

A-5. Conformance

conformance with rules or procedures.

Deliberate or malicious act; Individual conformance with rules or procedures; Team

Aircraft 2 did not comply with the instruction.

Algorithm 1: Algorithm to link each CEANITA report to the TOKAI taxonomy factors exploiting Syntactic Analysis.

Input: 1. The sequences of verbs/actions in the base form for each factor (e.g., for factor A-1, the list “see”, “identify”, “detect”,
“hear”, etc.). This sequences can be created directly by human operators, which can be supported by automatic tools.
Possibly, two sequences can be created for each factor, a positive and a negative one (e.g., for A-2, “remember” is in the

positive sequence, while “forget” in the negative one).

2. The text of the conclusive section of the CEANITA report of interest.
Output: For each of the factors (i.e., A-1, A-2, etc. in Table and for each subject (e.g., pilot or controller) the number of

positive and negative occurrences.
1 The text of the report is processed via UDPipe (see Section

-C|and Table [l] as reference);

E

2 In the UDPipe output (i.e., the result of lemmatisation, Part-of-Speech tagging, and dependency parsing) we search, for each of the
factors, the verbs in factor’s lists (both for the positive and negative lists);

3 For each of the identified verb, the subject is retrieved, also taking into account passive forms where the subject is the agent;

4 A check for negative forms or adverbs (e.g., “incorrectly”) is performed in the identified sentence to cope with the inversion of
meaning (i.e., positive verbs become negative if a negative form or adverb is present) ;

TABLE IV. CONFUSION MATRICES (%) ON THE DUMMY PREDICTIVE
PROBLEM (I.E., ESTIMATE ATCO’S AND PILOTS DIRECT CONTRIBUTION
BASED ON OUTPUTS OF ALGORITHM [I) VIA SVM TO VALIDATE ALGO-
RITHM T]

(A) PILOTS CONTRIBUTION (B) ATCO CONTRIBUTION

Pred. Pred.
No Yes No Yes
g No || 51.640.1 | 12.440.1 g No || 25.840.2 | 3.4+0.2
& Yes || 45303 | 31.5+0.3 & Yes || 11.240.2 | 59.61+0.2

trained with the 89 CEANITA reports was used, performing
accurate model selection (the kernel and the complexity hg/-
perparameters were searched in {10=%° 10735 ... 103U}
according to what described in Section [[V-D). The confusion
matrices computed on the test set are presented below.

Confusion matrices in Table appear to be reasonably
balanced, especially considering that the classes are highly
unbalanced. The global accuracy of the prediction is ~83%
for Pilots contribution and ~85% for ATCo contribution.
Therefore, it can be stated that:

« the proposed approach (Algorithm [I)) is able to automati-
cally link each CEANITA report to the TOKAI taxonomy
factors exploiting Syntactic Analysis;

« an indirect validation performed with a dummy prediction
problem showed promising performance;

« aside result of this indirect validation is that the extracted
link between CEANITA reports and TOKAI taxonomy is
actually a good proxy of the contribution assessment.

C. Automatic Contribution Assessment

After the EDA (Section and after linking CEANITA
reports and TOKAI taxonomy (Section [V-B), a data-driven
model (see Section was exploited to assess agents’
contribution before (i.e., 10 minutes after the incident) human
evaluation (which is a post-operation activity) based on the
automatic analysis of ATC events and other contextual data
(i.e., radar tracks of the aircraft and flight information).
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Furthermore, the analysis shows that this predictive model
actually captured meaningful relations and not just spurious
correlations from the data (see Section [[V-DJ.

Specifically, for each incident, the goal was to predict:

« the Pilots’ contribution, i.e., classified as direct or not;

o the ATCo’s contribution, i.e., classified as direct or not;
based on:

« the flight type;
the flight rule at the moment of the incident;
the flight level at the moment of the incident;
the airspace class at the moment of the incident;
for each of the 15 classes of ATC events (see Sec-
tion recorded from 30 minutes before to 10 min-
utes after the incident, their number of occurrences.
Considering this time window is fundamental since the
contributions of ATCo and Pilots depend both on what
was done to prevent the potential LoS and on how it was
managed when it became an actual LoS;
engineering a total of 19 features.

In this case, a Random Forest model was used (see Sec-
tion[IV-DJ), trained on the 70 incidents for which recorded ATC
events were available (the number of trees was set to 1000 and
the number of predictors to be randomly sampled during trees
construction was searched in {5,6,7,8,9} according to what
was described in Section [[V-D). Random Forests facilitate
the generation of different optimal models changing the cut-
off of the voting (i.e., how many trees need to agree to
decide for a particular class). By doing so, it was possible
to report different models, maximising respectively: the AUC,
the Sensitivity, and the Specificity. Moreover, Random Forests
provide the confidence of the prediction: this allows the user
to trust the model only when its confidence is higher than a
certain threshold.

Table [V]reports the confusion matrices of the developed pre-
dictive models (maximising AUC, Sensitivity, and Specificity)
for both ATCos’ and Pilots’ contributions.

Table instead, reports the confusion matrices of the
predictive models (maximising the AUC, since they appeared
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TABLE V. CONFUSION MATRICES OF THE DEVELOPED PREDICTIVE MOD-
ELS OF CONTRIBUTION BASED ON THE ATC EVENTS (MAXIMISING AUC,
SENSITIVITY, AND SPECIFICITY) FOR ATCO AND PILOTS CONTRIBUTIONS.

(A) PILOTS CONTRIBUTION
(MAXIMISING AUC)

(B) ATCO CONTRIBUTION
(MAXIMISING AUC)

Pred. Pred.
No [ Yes No [ Yes
g No || 46.040.3 | 18.34+0.3 g No || 20.84+0.3 | 4.9+0.3
& Yes || 6.940.3 | 28.840.3 & Yes || 14.14+0.3 | 60.240.3
(C) PiLOTS CONTRIBUTION (D) ATCO CONTRIBUTION

(MAXIMISING SENSITIVITY) (MAXIMISING SENSITIVITY)

Pred. Pred.
No | Yes No | Yes
g No || 33.9+0.3 | 30.4+0.3 § No 11.940.3 | 13.840.3
& Yes 0.1£0.2 | 35.6£0.2 & Yes 1.4+£0.2 | 72.9+0.2
(E) PILOTS CONTRIBUTION (F) ATCO CONTRIBUTION

(MAXIMISING SPECIFICITY) (MAXIMISING SPECIFICITY)

Pred. Pred.
No [ Yes No [ Yes
g No || 64.3+0.0 | 0.0£0.0 g No || 24.94+0.2 | 0.8+0.2
& Yes || 20.3+0.2 | 15.440.2 & Yes || 45.240.3 | 29.14+0.3

TABLE VI. CONFUSION MATRICES OF THE DEVELOPED PREDICTIVE MOD-
ELS BASED ON THE ATC EVENTS (MAXIMISING AUC) FOR BOTH ATCO
AND PILOTS CONTRIBUTIONS WHEN PREDICTIONS ARE TRUSTED ONLY IF
THEIR CONFIDENCE IS HIGHER THAN 60% AND 75%.

(A) PILOTS CONTRIBUTION
(CONFIDENCE >60%)

(B) ATCO CONTRIBUTION
(CONFIDENCE >60%)

Pred. Pred.
No [ Yes No [ Yes
g No || 58.14+0.3 | 9.3+0.3 g No || 20.44+0.3 | 6.1+0.3
& Yes || 47403 | 27.940.3 & Yes || 8.240.3 | 653403
(C) PILOTS CONTRIBUTION (D) ATCO CONTRIBUTION
(CONFIDENCE >75%) (CONFIDENCE >75%)
Pred. Pred.
No [ Yes No [ Yes
g No || 60.040.0 | 00.0£0.0 :5 No || 29.04+0.1 | 3.2+0.1
& Yes || 3.310.1 | 36.740.1 & Yes || 3.240.2 | 64.6+0.2

to be the most balanced ones) when predictions are considered
only if their confidence is higher than 60% and 75%.
Table [V] shows that:

o when the AUC is maximised (i.e., assuming the user
wants a balanced accuracy on both “Yes” and “No”
classes), accuracy reaches ~75% for Pilots contribution
and ~81% for ATCo; F1 score is ~70% for Pilots and
~86% for ATCo.

o when the Sensitivity is maximised, (i.e., assuming the
user wants to be as sure as possible that if the Pilots/ATCo
contribute to the LoS the algorithm classifies it as “Yes”)
the level of sensitivity reached is ~100% for Pilots, with
~70% of accuracy, and ~98% for ATCo, with ~85%
of accuracy; F1 score is ~70% for Pilots and ~91% for
ATCos.

« when the Specificity is maximised (i.e., assuming the user
wants to be as sure as possible that if the Pilots/ATCo
are not responsible, the algorithm classifies it as “No”)
the level of specificity reached is ~100% for Pilots, with
~80% of accuracy, and ~96% for ATCo, at the price of
a low accuracy, ~54%. F1 score is ~60% for Pilots and
~56% for ATCos.

Furthermore, Table shows that:
« when just predictions with confidence >75% are consid-
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ered, the accuracy reaches ~97% for Pilots contribution
and ~94% for ATCo. With this threshold, only 43% of
the predictions are trusted when assessing Pilots contri-
bution and 44% when considering the ATCo;

o when, instead, the accepted confidence level is decreased
from 75% to 60%, the accuracy reaches ~86% for both
Pilots and ACTo contributions. With this new confidence
level, 62% of observations are classified when assessing
Pilots contribution and 70% when considering ATCo.

Finally, the ranking of the features (see Section

produced by the Random Forest algorithm is computed. This
allowed the authors to observe that, based on the experience
of the domain experts, the models learned correctly the impor-
tance of features related to the separation responsibility, such
as the Flight type, the Flight rules, or the Airspace Class,
other than the relevance of interactions between the ATC and
the CWP, such as Radar Contact, ETO Over Fix or Action on
Flight Level, in order to identify ATM contributions. These are
promising results as the model presents room for improvement,
such as the inclusion of more surveillance information or
operational indicators such as traffic load.

VI. CONCLUSIONS

The objective of this work was to facilitate an automatic
extraction of meaningful and actionable information from LoS
reports and to investigate how the information recorded by the
systems can help estimating contribution assessment. For this
purpose, the authors proposed a threefold approach based on
(i) an EDA, (ii) an automatic classification of extracted knowl-
edge considering a state-of-the-art safety taxonomy (TOKAI),
and (iii) an Automatic Contribution Assessment model based
solely on the information recorded by the systems and avail-
able a few minutes after the ASMTs’ identification of the
LoS. The approach was tested on the LoSs reported in the
CEANITA public database and the related ATC events.

For EDA purposes, unsupervised NLP techniques were
applied aiming at identifying latent topics. In addition, this
exploration was complemented with a clustering analysis,
which facilitated the identification of similar incidents. Results
demonstrated the capacity of these techniques to effectively
identify meaningful topics and group together incidents.

For the automatic extraction of the safety factors and their
classification according to the TOKAI taxonomy, the authors
leveraged Syntactic Analysis. This is pioneering work in the
field, and the results showed an understanding of the potential
that these methods bring to safety analysis as well as a Re-
silience Engineering perspective. Indeed, the classification of
actions according to the TOKAI taxonomy (TOKAI factors are
neither negatively nor positively oriented) enables reframing
of human behaviour not as a sequence of errors that lead to an
undesired outcome (i.e., only pointing out where people went
wrong), but as emergent from the system, arising as a function
of complex interactions . The results of this classification were
validated by demonstrating the strong connection between the
factors identified and the main contributor to the incident.

Finally, the last step was the generation of an Automatic
Contribution Assessment model, able to provide a prior indi-
cation whether the pilots, the ATCo or both have contributed
to an incident. In this sense, different performance metrics
were considered for evaluating the validity of the result. The
results show that when only high-confidence predictions are
considered, the model output reaches approximately 97% of
accuracy for pilots’ contribution and 94% for ATCo.

Future work could validate these techniques on other
databases of reports (e.g., UKAB AirProx Board) and, more-
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over, these techniques could be tailored to identify factors
to be included in safety taxonomies or hidden sources of
Resilient performance (e.g., when not fulfilling a procedure
was opportune [53])), based on their presence on the reports,
and could help facilitating the analysis pointed out in [5].
Finally, integrating other sources of structured data (e.g., about
weather phenomena, STCA or TCAS activation, or traffic
load) to develop richer models could lead to further insights
in the estimation of contributors and precursors.

(1]
(2]

(3]

[4]

(5]

(6]

(71

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(23]

[22]

REFERENCES

SESAR Joint Undertaking, “European ATM master plan - executive
view, 2015 edition,” https://www.sesarju.eu/node/2865, 2015.

, “European ATM master plan - executive view, 2020 edition,” https:
/lop.europa.eu/en/publication-detail/-/publication/8atalad9-aac4- 11ea-
bb7a-01aa75ed71al} 2020.

Performance Review Comission, EUROCONTROL, “Performance re-
view report,” https://www.eurocontrol.int/sites/default/files/2020-06/eur
ocontrol-prr-2019.pdf, 2020.

EASA, “Report of the EASA SKPI RP3 S(K)PI working group,” https:
/lec.europa.eu/transport/sites/transport/files/easa_rp3_skpi_working_gro
up_-_tfinal_report.pdf, 2016.

CANSO, “Incidents investigation toolbox,” https://canso.fral.digitaloc
eanspaces.com/uploads/2021/04/CANSO-Incidents-Investigation-Tool
box.pdf, 2021.

N. Oza, J. P. Castle, and J. Stutz, “Classification of aeronautics system
health and safety documents,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 39, no. 6, pp. 670—
680, 2009.

J. Switzer, L. Khan, and F. B. Muhaya, “Subjectivity classification and
analysis of the ASRS corpus,” in IEEE International Conference on
Information Reuse & Integration, 2011.

S. Wolfe, “Wordplay: an examination of semantic approaches to classify
safety reports,” in AIAA Infotech@Aerospace, 2007.

I. Persing and N. Vincent, “Semi-supervised cause identification from
aviation safety reports,” in Joint Conference of the Annual Meeting of
the ACL, 2009.

R. Patriarca, R. Cioponea, G. Di Gravio, and A. Licu, “Managing Safety
Data: the TOKAI Experience for the Air Navigation Service Providers,”
Transportation Research Procedia, vol. 35, pp. 148-157, 2018.

R. Patriarca, G. Di Gravio, R. Cioponea, and A. Licu, “Safety intel-
ligence: Incremental proactive risk management for holistic aviation
safety performance,” Safety science, vol. 118, pp. 551-567, 2019.

S. Ananyan and M. Goodfellow, “Example application of PolyAnalyst
with TATA STEADES data,” https://flightsafety.org/wp-content/uploads
/2016/09/polyanalyst_application.pdt, 2004.

L. Tanguy, N. Tulechki, A. Urieli, E. Hermann, and C. Raynal, “Natural
language processing for aviation safety reports: From classification to
interactive analysis,” Computers in Industry, vol. 78, pp. 80-95, 2016.
K. D. Kuhn, “Using structural topic modeling to identify latent topics
and trends in aviation incident reports,” Transportation Research Part
C: Emerging Technologies, vol. 87, pp. 105-122, 2018.

W. J. Irwin, S. D. Robinson, and S. M. Belt, “Visualization of large-
scale narrative data describing human error,” Human factors, vol. 59,
no. 4, pp. 520-534, 2017.

S. D. Robinson, “Temporal topic modeling applied to aviation safety
reports: A subject matter expert review,” Safety science, vol. 116, pp.
275-286, 2019.

0. Sjoblom, “Data mining in promoting aviation safety management,”
in International Conference on Well-Being in the Information Society,
2014.

S. Ravizza, J. Chen, J. A. D. Atkin, P. Stewart, and E. K. Burke, “Aircraft
taxi time prediction: comparisons and insights,” Applied Soft Computing,
vol. 14, pp. 397-406, 2014.

H. Lee, W. Malik, and Y. C. Jung, “Taxi-out time prediction for
departures at Charlotte airport using machine learning techniques,” in
AIAA Aviation Technology, Integration, and Operations Conference,
2016.

S. Ayhan and H. Samet, “Aircraft trajectory prediction made easy with
predictive analytics,” in ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016.

C. E. Verdonk Gallego, V. F. Gémez Comendador, M. A. Amaro
Carmona, R. M. Arnaldo Valdés, F. G. Sdez Nieto, and M. Garcia
Martinez, “A machine learning approach to air traffic interdependency
modelling and its application to trajectory prediction,” Transportation
Research Part C: Emerging Technologies, vol. 107, pp. 356-386, 2019.
C. E. Verdonk Gallego, V. F. Gémez Comendador, F. J. Saez Nieto, and
M. Garcia Martinez, “Discussion on density-based clustering methods
applied for automated identification of airspace flows,” in IEEE/AIAA
Digital Avionics Systems Conference, 2018.

M. Conde Rocha Murca, R. DeLaura, R. J. Hansman, R. Jordan,
T. Reynolds, and H. Balakrishnan, “Trajectory clustering and clas-
sification for characterization of air traffic flows,” in AIAA Aviation
Technology, Integration, and Operations Conference, 2016.

11th SESAR Innovation Days

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[36]
[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]
[49]

[50]

(511

[52]

[53]

N. Takeichi, R. Kaida, A. Shimomura, and T. Yamauchi, “Prediction of
delay due to air traffic control by machine learning,” in AIAA Modeling
and Simulation Technologies Conference, 2017.

S. Choi, Y. J. Kim, S. Briceno, and D. Mavris, “Prediction of weather-
induced airline delays based on machine learning algorithms,” in
IEEE/AIAA Digital Avionics Systems Conference, 2016.

G. Di Gravio, M. Mancini, R. Patriarca, and F. Costantino, “Overall
safety performance of Air Traffic Management system: Forecasting and
monitoring,” Safety science, vol. 72, pp. 351-362, 2015.

A. Rodriguez-Sanz, F. Gémez, J. M. C. Garcia, and L. Meler, “Anal-
ysis of saturation at the airport-airspace integrated operations,” in
USA/Europe Air Traffic Management Research and Development Semi-
nar, 2017.

F. Bati and L. Withington, “Application of machine learning for aviation
safety risk metric,” in IEEE/AIAA Digital Avionics Systems Conference,
2019.

Z. Nazeri, D. Barbara, K. De Jong, G. Donohue, and L. Sherry,
“Contrast-set mining of aircraft accidents and incidents,” in Industrial
Conference on Data Mining, 2008.

S. D. Robinson, W. J. Irwin, T. K. Kelly, and X. O. Wu, “Application
of machine learning to mapping primary causal factors in self reported
safety narratives,” Safety science, vol. 75, pp. 118-129, 2015.

E. Hollnagel and D. D. Woods, “Epilogue: Resilience engineering
precepts,” Resilience engineering: Concepts and precepts, pp. 347-358,
2006.

E. Hollnagel, Safety-I and safety-II: the past and future of safety
management. CRC press, 2018.

D. M. Blei and J. D. Lafferty, “Topic models,” Text mining: classifica-
tion, clustering, and applications, vol. 10, no. 71, p. 34, 2009.
B. S. Duran and P. L. Odell, Cluster analysis: a survey.
Science & Business Media, 2013.

M. Straka and J. Strakovd, “Tokenizing, pos tagging, lemmatizing and
parsing ud 2.0 with udpipe,” in CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies, 2017.

S. Shalev-Shwartz and S. Ben-David, Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

I. C. A. Organization, “Annex 11,” http://skyrise.aero/wp-content/uplo
ads/2017/03/ICAO- Annex- 1 1- Air-tratfic-services.pdf, 2001.

S. Das, K. Dixon, X. Sun, A. Dutta, and M. Zupancich, “Trends in trans-
portation research: Exploring content analysis in topics,” Transportation
Research Record, vol. 2614, no. 1, pp. 27-38, 2017.

L. Sun and Y. Yin, “Discovering themes and trends in transportation
research using topic modeling,” Transportation Research Part C: Emerg-
ing Technologies, vol. 77, pp. 49-66, 2017.

F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: an
overview,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 2, no. 1, pp. 86-97, 2012.

B. Mirkin, “Choosing the number of clusters,” Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 1, no. 3, pp. 252—
260, 2011.

J. Shawe-Taylor and N. Cristianini, Kernel methods for pattern analysis.
Cambridge university press, 2004.

L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5-32,
2001.

M. Ferndndez-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
The journal of machine learning research, vol. 15, no. 1, pp. 3133-3181,
2014.

Springer

M. Wainberg, B. Alipanahi, and B. J. Frey, “Are random forests truly the
best classifiers?” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 3837-3841, 2016.

L. Oneto, Model Selection and Error Estimation in a Nutshell. Springer,
2020.

1. Orlandi, L. Oneto, and D. Anguita, “Random forests model selection,”
in European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN), 2016.

H. White, “A reality check for data snooping,” Econometrica, vol. 68,
no. 5, pp. 1097-1126, 2000.

I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of machine learning research, vol. 3, no. Mar, pp.
1157-1182, 2003.

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A survey of methods for explaining black box models,”
ACM computing surveys, vol. 51, no. 5, pp. 1-42, 2018.

Y. Saeys, T. Abeel, and Y. Van de Peer, “Robust feature selection
using ensemble feature selection techniques,” in Machine Learning and
Knowledge Discovery in Databases, 2008, pp. 313-325.

R. Genuer, J. M. Poggi, and C. Tuleau-Malot, “Variable selection using
random forests,” Pattern recognition letters, vol. 31, no. 14, pp. 2225—
2236, 2010.

NTSB, “Aircraft accident report NTSB/AAR-19/03,” https://www.ntsb

.gov/investigations/AccidentReports/Reports/AAR1903.pdf, 2018.

B AN
Engage

SESAR

JOINT UNDERTAKING

founding members

€

EUROCONTROL


https://www.sesarju.eu/node/2865
https://op.europa.eu/en/publication-detail/-/publication/8afa1ad9-aac4-11ea-bb7a-01aa75ed71a1
https://op.europa.eu/en/publication-detail/-/publication/8afa1ad9-aac4-11ea-bb7a-01aa75ed71a1
https://op.europa.eu/en/publication-detail/-/publication/8afa1ad9-aac4-11ea-bb7a-01aa75ed71a1
https://www.eurocontrol.int/sites/default/files/2020-06/eurocontrol-prr-2019.pdf
https://www.eurocontrol.int/sites/default/files/2020-06/eurocontrol-prr-2019.pdf
https://ec.europa.eu/transport/sites/transport/files/easa_rp3_skpi_working_group_-_final_report.pdf
https://ec.europa.eu/transport/sites/transport/files/easa_rp3_skpi_working_group_-_final_report.pdf
https://ec.europa.eu/transport/sites/transport/files/easa_rp3_skpi_working_group_-_final_report.pdf
https://canso.fra1.digitaloceanspaces.com/uploads/2021/04/CANSO-Incidents-Investigation-Toolbox.pdf
https://canso.fra1.digitaloceanspaces.com/uploads/2021/04/CANSO-Incidents-Investigation-Toolbox.pdf
https://canso.fra1.digitaloceanspaces.com/uploads/2021/04/CANSO-Incidents-Investigation-Toolbox.pdf
https://flightsafety.org/wp-content/uploads/2016/09/polyanalyst_application.pdf
https://flightsafety.org/wp-content/uploads/2016/09/polyanalyst_application.pdf
http://skyrise.aero/wp-content/uploads/2017/03/ICAO-Annex-11-Air-traffic-services.pdf
http://skyrise.aero/wp-content/uploads/2017/03/ICAO-Annex-11-Air-traffic-services.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/AAR1903.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/AAR1903.pdf

	Introduction
	Scope of the Work
	Data Description
	CEANITA LoS Reports
	ENAIRE-CRIDA Contextual Information

	Methods
	Topic Modelling
	Clustering Analysis
	Syntactic Analysis
	Data-Driven Predictive Models

	Experimental Results
	Exploratory Data Analysis
	Automatic Extraction of TOKAI Taxonomy Factors
	Automatic Contribution Assessment

	Conclusions
	References



