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Abstract—We evaluate a potential scenario for future Air
Traffic Management (ATM) system in Europe and benefits it
could bring to the Airspace Users, where a network manager
(NM) has a mandate to manage capacity in the network and
define capacity requirements to accommodate anticipated de-
mand in a safe, efficient and environmentally friendly manner.
In the considered scenario, the European airspace is still highly
fragmented, i.e. capacity is provided by individual Air Navigation
Service Providers (ANSPs) on a local/country level, but the
assumption is that cross-border capacity provision is possible
and is optimized in the capacity planning process led by the NM.
Capacity planning usually starts a long time ahead of the day of
operation to ensure that sufficient resources, including Air Traffic
Control Officers (ATCOs) are available to safely manage traffic.
At the time of making capacity decision, i.e. allocation of ATCO
resources for a day of operation, one of the main challenges is
considerable uncertainty regarding the demand: overall traffic
volume and demand spatio-temporal distribution.

The fundamental trade-off is between reducing the capacity
provision cost (within-border and cross-border provision) at the
expense of increasing expected displacement cost arising from
re-routing or delays. To tackle this, we extend a decomposition
approach that we proposed in [1] to allow capacity planning
for cross-border provision. Furthermore, we present a numerical
study based on real capacity and demand (traffic) data to study
the effect of allowing cross-border capacity provision. The results
suggest that there may be significant potential for cost reduction
in cross-border control, especially for risk-averse decision makers.

Keywords—capacity ordering policies; cross-border capac-
ity provision; integer programming applications; decomposition
methods

I. INTRODUCTION

Before the traffic downturn in 2020 due to the COVID19
pandemic, en-route Air Traffic Flow Management (ATFM)
delays and share of en-route ATFM delayed flights in the
European airspace have been increasing for several years [2].
Namely, total en-route ATFM delay increased from 7.2 million
minutes in 2015 to 19.0 million minutes in 2018, with the
share of en-route ATFM delayed flights increased from 3.9%
in 2015 to 9.6% in 2018 (traffic volumes being 9.75 vs. 11.0
million flights in 2015 and 2018 respectively). Although the
share of en-route ATFM delayed flights increased to 9.9% in

2019 (11.1 million flights in 2019), total en-route ATFM delay
decreased to 17.2 million minutes [2].

Delays are not uniformly distributed in Europe across dif-
ferent ANSPs, and their respective airspaces; the Performance
Review Commission (PRC) notes that only four of the most
constraining ANSPs generated around two thirds of all en-
route ATFM delay in 2019 [2]. ANSPs attributed around 75%
of en-route ATFM delay to Air Traffic Control (ATC) cate-
gories (reasons): capacity, staffing and disruption [2]. However,
the PRC suggests that this share could be as high as 90%, since
some of ATFM delay attributed to adverse weather “occurred
in the same sector configurations where the ANSPs have
already flagged that the capacity constraints are due to the
unavailability of qualified ATC staff (ATC staffing)” (a more
detailed analysis on this issue is provided in [3]). Some of
the most constraining ATC en-route sectors were collapsed
sectors in the 2012–2019 period, meaning that additional
sectors could have been opened, hence additional capacity
provided, if ATCOs had been available [2]. ANSPs did not
always deliver the maximum (presumably available) capacity
at the time when it was needed, i.e. there were mismatches
between the deployment of maximum capacity and the traffic
demand, resulting in higher ATFM delays [4].

On the other hand, one of the reasons for the drop in delay in
2019 was attributed to the adoption of the enhanced NM/ANSP
Network Measures for summer 2019 (eNM/S19) [2], [5]. Since
it was neither possible to deploy more capacity due to lack of
ATCOs nor to enable cross-border capacity provision, a subset
of these measures aimed at alleviating traffic loads in already
congested portions of airspace by re-routing flights in both
horizontal and vertical plane, employing a network-centric
perspective. Although these measures generated additional fuel
burn and emissions (e.g. horizontal re-routings added 1.62
nautical miles of additional length per flight and 11 kg of
additional fuel burn, on average), it was estimated that without
them the delay levels could have doubled in 2019 vs 2018 [2].

The PRC concludes that a currently local-oriented capacity
and demand management, should instead be network-oriented,
i.e., managed by the NM with ANSPs and AUs collaborative



efforts to find the best solution for the network as a whole [2].
The same recommendation is outlined in the report of the Wise
Persons Group (WPG) on the future of the Single European
Sky, stressing the importance of strengthening the role of the
NM to actually manage the network [6]. It should be noted
that AUs are also in favour of a more pro-active network
management, especially in the light of strongly increasing
ATFM delays in recent years [7], [8]. In addition, the SESAR
Joint Undertaking Proposal on the future architecture of the
European airspace (AAS), introduced a concept of “capacity-
on-demand”, which would enable a temporary delegation of
the provision of air traffic services to an alternative provider
with spare capacity [9].

Against this background, we propose and evaluate a concept
of a potential future ATM system where both the WPG
recommendation for strengthening the role of the NM to
manage capacity (and demand) and the AAS capacity-on-
demand in a form of cross-border capacity provision are
implemented. On the capacity side, the NM makes strategic
capacity decision for the day of operations regarding the level
of capacity required in the network, including the need for
cross-border capacity provision. At the tactical level, the NM
makes a decision which sector configurations will be opened
for each ANSP, taking into account resources allocated at
the strategic level. The NM makes capacity decisions jointly
with demand management decisions, i.e., decisions how to re-
distribute demand in temporal and spatial dimensions (where
and when needed).

Previous academic work which tackled the issue of demand-
capacity imbalance considering application of both capacity
and demand measures in a coordinated fashion is very limited.
Besides the SESAR Exploratory Research project COCTA [10]
which dealt with this challenge (without considering cross-
border capacity provision), the authors of this paper are only
aware of the work carried out in the SESAR project APACHE
[11]. They used a mixed integer programming model to
balance capacity and demand and reached the same conclusion
as in COCTA: not only the system delays could be largely
reduced, but also the ATC operational costs and the required
total capacity provisions [11].

The main contribution of this paper lies in demonstrating
that overall cost-efficiency could be improved by incorporating
cross-border capacity considerations already in the strategic
planning phase. This may seem somewhat counter-intuitive
since we assume that cross-border capacity comes at a cost per
sector-hour which is at least as high as the cost of the highest
within-border sector-hour, such that one might expect that it
will be better to invest more in local capacity so as to deal
with capacity shortages (and the resulting displacement costs).
However, we demonstrate that cross-border provision can be
overall beneficial since it allows us to temporarily increase
capacity in an airspace that otherwise would not have sufficient
capacity to deal with traffic peaks. We show that our earlier
capacity planning methodology developed in [1] (as part of
the COCTA project) can be easily adjusted so as to be able to
handle cross-border planning.

The paper is structured as follows: section II has been
directly taken from our earlier work [1] so as to define the

problem formulation. In Section III, we extend this methodol-
ogy to the case of cross-border capacity planning. We provide
numerical results for this extension in Section IV and conclude
in Section V.

II. PROBLEM STATEMENT

We define an ATM system where a network manager has
a mandate to manage capacity and demand, that is, to make
capacity requirement decisions (for each area control centre
(ACC) in the network) and decisions on delaying or re-
routing flights and flows. The problem is posed as a somewhat
stylized process over two stages; the objective is to minimize
the cost borne by airspace users, that is, capacity provision
costs and displacement costs (both re-routing and delay incurs
displacement costs).

In the first stage, the NM plans how many sector-hours will
be required for each airspace for a specific day in the future,
which in practice corresponds to the strategic planning phase.
At this stage, the NM has information on scheduled flights,
e.g. origin and destination airport and timetables. There is
only some probabilistic information regarding non-scheduled
flights available, meaning that we have the ability to sample
non-scheduled flights. We assume for some uncertainty in the
capacity provision as well, meaning that ANSPs might not
be able to provide the planned nominal capacity of sectors on
the day of operations. Based on assessment on potential future
materialization of traffic (scheduled and non-scheduled flights)
and uncertainties in capacity provision, the NM makes capacity
requirement decision, measured in sector-hours for individual
ANSPs (airspaces).

In the second stage, which corresponds to the day of
operations, the uncertain information regarding non-scheduled
flights (number of flights, their origins and destinations as
well as desired departure times) and capacity (reductions) is
revealed. In the light of this information, the NM decides on
re-routing or delaying flights on the demand side, and on the
exact sector opening scheme for each airspace, subject to the
fixed “capacity budget” from the first stage. Structurally, the
problem is related to the well-known newsvendor problem (see
[12]). In the following, we offer a rigorous definition of this
problem.

Consider multiple airspaces a ∈ A, each with a finite
number of possible sector configurations c ∈ Ca. For a given
configuration c, we have a set of sectors p ∈ P c that form
the elements of the configuration. Each of these sectors p is
either an elementary sector or consists of multiple elementary
sectors merged together (referred to as a collapsed sector).
Each sector p has a fixed nominal capacity of Kp flights that
may enter that sector within a given time period u ∈ U . The
time periods in U span the day of operation on a uniform
grid with spacing chosen such that it is possible to change
the configuration of an airspace from one time period to the
next (say, 1 hour). This is motivated by current practice where
a required capacity profile for the following summer season
is defined on an hourly basis and ACCs may even change
sector configurations more frequently than that [13]. Opening
configuration c in airspace a for one time period requires h̄ac

sector-hours.
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In practice, there is supply-side uncertainty due to factors
that affect capacity provision, such as weather conditions,
military activity, strikes of air traffic controllers etc. We assume
that we do not know the true distribution that governs the
materialization of supply-side uncertainty; however, we do
have a uniform distribution over a finite collection K of
capacity disruption scenarios K ∈ K where some sectors
are operating at a fraction of their nominal capacities. We
assume that this distribution can be used to approximate the
true (unknown) distribution of capacity disruption scenarios.
We only observe in period 2 which capacity scenario K we
are facing.

Furthermore, there is also demand-side uncertainty over the
number and details of non-scheduled flights in period 1 that
only gets resolved in period 2. Similarly to modeling the
capacity disruption scenarios, we assume that we do not know
the true distribution that governs the materialization of non-
scheduled flights but that we do have a uniform distribution
over a finite collection of flight scenarios which we assume to
approximate the true distribution. Both collections are known
in period 1; for instance, this could be defined as the collection
of historic operating capacities and non-scheduled flights. We
augment the collection of non-scheduled flights scenarios F
by adding a fixed and known set of scheduled flights to every
scenario of non-scheduled flights; the resulting collection of
flight scenarios is denoted by F . In other words, every element
F ∈ F is a set of flights, and the elements only differ by
the non-scheduled flights; the scheduled flights are the same
in each of them. Note that traffic scenario F relates only to
the number of flights, their origins and destinations, planned
departure time, and a set of trajectory options Rf for every
flight f that represent different demand management measures
of re-routing or delaying flight f , including the option for
the shortest route without delay. The traffic scenario does not
determine the trajectories.

Both sources of uncertainty are paired to form scenarios S =
(FS ,KS). Scenarios are collected in set S. In the following,
we write the expectation over scenarios S in the understanding
that uncertainty only pertains to non-scheduled flights and
capacity scenarios. For a given flight f , route r ∈ Rf , time
period u ∈ U and a sector p, we define bfrpu ∈ {0, 1} to be
equal to 1 if route r uses sector p at time u, and otherwise 0.
Each of these route options r ∈ Rf comes with an associated
displacement cost dfr that reflects the additional fuel cost and
delay costs incurred relative to the shortest distance at no delay
(dfr for the latter is set to zero). As such, we incorporate not
only cost to the ANSP, but also costs to airspace users. The
aim is to reduce overall costs.

We face a trade-off between achieving cost savings by
decreasing capacity provision cost in stage 1, and increasing
costs by potentially increased need for demand management
measures depending on the realization of non-scheduled flights
and unexpected shortfalls of capacity in some parts of the
airspace. In stage 1, we need to decide on how much capacity
budget h = (ha)a∈A in terms of sector-hours to acquire for
the different airspaces (at unit cost γa for each airspace a).
In stage 2, we then decide on the sector opening scheme by
setting zacu = 1 if airspace a gets configuration c at time u,

TABLE I. OVERVIEW OF NOTATION.

Sets:
F Flight scenario (scheduled and non-scheduled flights)
F Finite collection of flight scenarios F
K Capacity scenario (some sector capacities may be

reduced)
K Finite collection of capacity scenarios K
S Short-hand notation for pair (FS ,KS)
S Finite collection of uncertain scenarios S
Rf Finite set of re-routing and delay options available

to flight f
U Set of time periods covering the day of operation
A Set of airspaces
Ca Set of configurations for airspace a
P c Partition of sectors corresponding to a configuration

c

Indices:
f Flights
u Time index
r Route option, fixed in both spatial and temporal

terms
a Airspace
c Airspace’s configuration
p Airspace sector

Parameters:
γ = (γa)a∈A Unit cost of one sector hour for airspace a
κS
p Maximum capacity of airspace sector p under sce-

nario KS

h = (ha)a∈A Budgets of available sector-hours for all airspaces
a ∈ A

h̄ac Sector-hours used and provided by airspace a in
configuration c per time unit

h̄x
ac Sector-hours used by airspace a but provided through

cross-border control in configuration c per time unit
dfr Displacement cost of route r for flight f
bfrpu ∈ {0, 1} Indicates whether route r uses sector p at time u

Variables:
zacu ∈ {0, 1} Indicator: configuration c open in airspace a in time

period u
yfr ∈ {0, 1} Indicator: flight f assigned to route r

and 0 otherwise. This sector opening scheme is subject to the
fixed capacity budget h. Furthermore, we decide on demand
management measures in stage 2: yfr = 1 represents assigning
flight f to route r ∈ Rf , and 0 otherwise. We summarize the
notation in Table I.

The optimization problem that we tackle can be written as
the minimization of expected displacement cost and capacity
cost over all possible scenarios S by deciding on the capacity
budget h:

min
h≥0

ES [G(S|h)] + γTh, (1)

where G(S|h) represents the minimum displacement cost to
accommodate flight scenario FS under capacity budgets h,
given capacities KS . The superscript T denotes the transpose
of a vector. To ensure feasibility of G(S|h), we add a dummy
configuration c0 that requires no capacity (h̄ac0 = 0 for all a),
is used by a dummy route r0 ∈ Rf for all flights f ∈ F , and
its single sector p ∈ P c0 has capacity κp = |F | regardless of
the capacity scenario materialization. Using this dummy route
incurs a high penalty cost which can be interpreted as the cost
of displacing a flight beyond the planning horizon. With this
construct, the displacement cost function G(S|h) for a given
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flight scenario FS and a given capacity scenario KS , is defined
by a deterministic integer program:

G(S|h) = min
y,z

∑
f∈FS

∑
r∈Rf

dfryfr

s.t.
∑
f∈FS

∑
r∈Rf

bfrpuyfrzacu ≤ κS
p

∀ a ∈ A, c ∈ Ca, p ∈ P c u ∈ U (2)∑
u∈U

∑
c∈Ca

h̄aczacu ≤ ha ∀ a ∈ A (3)∑
r∈Rf

yfr = 1 ∀f ∈ FS (4)

∑
c∈Ca

zacu = 1 ∀a ∈ A, u ∈ U (5)

zacu ∈ {0, 1} ∀a ∈ A, c ∈ Ca, u ∈ U
(6)

yfr ∈ {0, 1} ∀f ∈ FS , r ∈ Rf . (7)

The objective of G(S|h) is to minimize displacement and
penalty costs, subject to (2): used capacity in a given sector
and time period being less than maximum capacity; (3): total
capacity usage to not exceed the capacity budget h; (4):
every flight being assigned to exactly one trajectory; (5):
every airspace a having exactly one configuration at every
time u; and binary constraints (6–7). Note that constraint
(2) is non-linear; a standard linearization of this constraint
requires to introduce a new set of binary variables nfracu

replacing the products yfrzacu, together with a new set of
constraints to enforce equivalence. This approach provides
a tight relaxation but is not scalable for this problem. As
an example, a medium-sized network with 10 airspaces, 10
configurations, 100 flights with 10 routes, studied over 2 time
periods, requires 200,000 additional variables and 600,000
additional constraints. Consequently, in order to solve G(S|h)
directly (for small instances), we replace constraints (2) with:∑

f∈FS

∑
r∈Rf

bfrpuyfr ≤ κS
p zacu + |FS |

∑
c′ ̸=c

zac′u

∀a ∈ A, c ∈ Ca, p ∈ P c, u ∈ U. (8)

Constraints (8) have a loose linear programming relaxation
but, at least for small instances, they allow solving of G(S|h)
with commercial solvers like CPLEX as discussed in the
numerical results section. We represent G(S|h) with the non-
linear constraints (2) because we use them in our proposed
decomposition approach.

In summary, (1) is a type of newsvendor problem that is
difficult to solve even for moderately-sized instances due to
the challenges in evaluating the expectation. We do not have
a closed-form expression of the distribution that underpins the
realizations of non-scheduled flights, and we need to solve a
large binary program for every such realization to evaluate the
costs in stage 2. We use the solution approach proposed in our
earlier work [1].

III. EXTENSION TO CROSS-BORDER PROVISION

Let us turn to the case where cross-border capacity pro-
vision is possible. We assume that the potential cooperation

arrangements are known (in the sense of which ACC could
provide capacity with whom), and likewise the costs of cross-
border provision per sector hour is assumed to be known
and higher than within-border capacity provision. The higher
costs stems from the requirement that air traffic controllers
need to be specifically trained to handle sectors in foreign
airspace. Let us assume that there is a central pool of air traffic
controllers (measured again in sector-hours) that we can draw
on to manage high traffic hotspots. This simplifies exposition,
and it represents the advantageous situation of the NM being
very flexible in when and where local capacity is supported.
However, it is straight-forward to extend the framework to
the case of other collaboration arrangements in the form of
multiple pools of capacity that can be used only in certain
airspaces.

As before, we seek to minimize expected cost by deciding
on the budget of sector hours for each airspace as well as for
the cross-border budget:

min
h≥0

ES [G (S|h)] + γTh,

where G (S | h) represents the minimum displacement costs
stemming from demand management measures and γTh rep-
resents the costs of capacity provision. The decision vector
h contains also the budget hx for cross-border provision.
This budget can be used to run configurations in different
airspaces that have at least one remote-controlled sector.
We split the cross-border budget hx into allocations xa to
different airspaces such that (for any airspace a) the con-
sumed cross-border capacity does not exceed its allocation:∑

u∈U

∑
c∈Ca,x h̄x

acz
S
acu ≤ xa, where Ca,x denotes the set

of configurations of airspace a featuring at least one remote-
controlled sector.

With this, we can formulate the optimization problem to
determine the displacement cost G(S|h) under scenario S
given capacity budgets h:

G(S|h) = min
y,z

∑
f∈FS

∑
r∈Rf

dfryfr

s.t.
∑
f∈FS

∑
r∈Rf

bfrpuyfrzacu ≤ κS
p

∀a ∈ A, c ∈ Ca, p ∈ P c, u ∈ U∑
a∈A

xa ≤ hx

∑
u∈U

∑
c∈Ca

haczacu ≤ ha, ∀a ∈ A∑
u∈U

∑
c∈Ca,x

h̄x
aczacu ≤ xa ∀a ∈ A
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∑
r∈Rf

yfr = 1, ∀f ∈ FS

∑
a∈Ca

zacu = 1, ∀a ∈ A, u ∈ U

xa ≥ 0 ∀a ∈ A

yfr ∈ {0, 1} , ∀f ∈ FS , r ∈ Rf

zacu ∈ {0, 1} , ∀a ∈ A, c ∈ Ca, u ∈ U.

Taking the same route as above, we approximate the problem
by looking for the minimum cost solutions for several sampled
scenarios (so as to make the problem deterministic and thus
less complex), and then determine an approximate solution to
the original problem by consolidating the set of solutions into
a single recommended one.

To do so, the key realisation is that we can include cross-
border implications through the definition of a configuration c.
We assume that the maximum capacity configuration of an
airspace is not used without cross-border provision because
otherwise an ACC would need to commit to a large number of
ATCOs (that are however only all needed in few peak times).
Therefore, we model the maximum capacity configurations to
have one or several sectors controlled from a foreign ANSP.

Whilst the cost for a configuration with a cross-border
controlled sector will be higher than if there is no cross-border
controlled sector, this configuration would have more sectors
open than otherwise available for that airspace (since cross-
border would only be invoked when the domestic ANSP cannot
support the traffic any more). The idea is to only make use
of cross-sector configurations to adjust to traffic peaks, so that
despite having higher service provision costs, we save on delay
and re-routing.

In the underpinning stochastic problem, this cross-border ca-
pacity pool serves as a hedge against the risk of underprovision
of capacity in any airspace without us having to pre-commit all
capacity to individual airspaces. In the deterministic problem
G(S) for a given scenario S, we only have a benefit from
configurations with cross-border controlled sectors if traffic is
such that we need the configurations’ high capacity throughput
in order to avoid displacement costs that are larger than the
additional cost of capacity. This deterministic problem G(S)
with cross-border control is given by:

G(S) = min
y,z

∑
a∈A

∑
c∈Ca

∑
u∈U

γaczacu +
∑
f∈FS

∑
r∈Rf

dfryfr

s.t.
∑
f∈FS

∑
r∈Rf

bfrpuyfrzacu ≤ κS
p zacu

∀ a ∈ A, c ∈ Ca, p ∈ P c u ∈ U∑
r∈Rf

yfr = 1 ∀f ∈ FS

∑
c∈Ca

zacu = 1 ∀a ∈ A, u ∈ U

zacu ∈ {0, 1} ∀a ∈ A, c ∈ Ca, u ∈ U

yfr ∈ {0, 1} ∀f ∈ FS , r ∈ Rf .

The cost coefficient γac represents the cost of configuration
c for one time period; otherwise, the formulation is exactly
as in the original solution approach in [1]. Therefore, we can
use the same methodology to solve this problem efficiently for
the cross-border provision case as well. Solving this problem
for a single scenario S gives us the budget of hS

a for each
airspace a as before. The cross-border budget is given by
hx,S :=

∑
a∈A

∑
u∈U

∑
c∈Ca,x h̄x

acz
S
acu, where Ca,x is the set

of configurations of airspace a that feature at least one remote-
controlled sector, and hx

ac denotes the number of sector-hours
needed from the central pool to run this configuration for one
time unit. The policy to consolidate the solutions is introduced
below.

IV. NUMERICAL EXPERIMENTS

We demonstrate the ability of this approach to deal with
cross-border capacity planning by conducting a numerical case
study based on real flight data. Sector configurations that were
adapted from real sector data and modified so as to reflect
cross-border control. The aim is to gain insights into the
general impact that the inclusion of cross-border control may
have compared to working without it.

A. Decision Policy

The foresight approach will produce a set of solutions hS

for different scenarios S. However, we still require a consensus
function that maps from this collection of solutions to a single
one to be used. We refer to such a consensus function as
a policy; for our experiments, we used the best-performing
policy reported in our earlier work [1]. This policy is defined
as follows:
ϵ = x%: In the risk-based policy, the capacity decision is
obtained by setting h∗ such that the sample probability of
encountering a flight scenario in which we had better planned
for more capacity in at least one airspace is less than a given
ϵ, i.e. Prob(h ⊀ h∗) < ϵ, where the sample probability
distribution of h has been computed by the perfect foresight
approach over scenarios S ∈ S with step-size α = 10−9

(small due to scaling issues). The ϵ policy is tested with
ϵ ∈ {0.01, 0.05, 0.10, 0.20}. Setting ϵ to large values such as
0.10 or 0.20 reflects an increasing willingness to accept the risk
of making capacity decisions which could work poorly under a
significant number of traffic scenarios. On the other extreme,
setting ϵ to smaller values such as 0.01 or 0.05 represents
less risk and thus is more appropriate for risk-averse decision
makers.

B. Data Description

We use real capacity and demand data, which we obtained
via the EUROCONTROL Demand Data Repository service
using the EUROCONTROL Network Strategic Tool (NEST).
The selected region includes en-route airspace in Central and
Western Europe, including eight ANSPs and 15 ACCs/sector
groups. It covers a large part of the so-called core area (e.g.,
MUAC and Germany) of the European airspace, as well as a
part of airspace that is not as congested (e.g Polish and Slo-
vakian airspace). Based on historical usage of configurations in
2016, for each ACC or sector group, we selected configurations
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with different numbers of sectors that were most frequently
used: in total, we have 173 different configurations for the 15
ACCs/sector groups. We calculated average ATCO costs per
sector-hour for the different ANSPs, and in one case for an
ACC, based on [14]. We treat those costs as variable costs at
the strategic level (although ATCO costs might be considered
fixed costs in the short term, reducing the daily number of
ATCO hours will reduce the total number of ATCOs needed
for ANS provision, consequently reducing staff costs). For
cross-border capacity provision, we assume that the cost per
sector-hour is either equal to or 10% higher than the MUAC
sector-hour (the highest among ANSPs/ACCs in study).

Capacity planned at the strategic level is often not provided
on the day of operations for many different reasons. Some
of these reasons exhibit some regularities and could be an-
ticipated/planned well in advance, while other are not easy
to predict. We partially rely on historical ATFM regulations
to derive a uniform probability distribution over sectors that
a random sector in an ACC will have capacity reduction by
10%, 30%, or 50% or will be closed for flights entirely (zero-
rate entry count). We use the same distribution as in [1]. To
avoid creating overly restrictive capacity scenarios, we limit
the number of sectors per ACC with reduced capacity. We
also limit the maximum number of sectors which can be
opened by several ACCs, namely Wien ACC, Karlsruhe ACC
(Central) and MUAC, unless cross-border capacity provision
is employed.

We selected 9th September 2016, the busiest day in 2016,
to obtain demand/flight data. A subset of morning schedule
flights and all non-scheduled flights on the selected day (which
crossed the study airspace) create our flight dataset. The final
demand set, i.e. flight scenario, consists of 1,200 scheduled
flights (fixed) and 211 non-scheduled flights randomly selected
from a pool of 1569 flights. As a result, in each demand
scenario 15% of flights are non-scheduled. Note that we
uniformly distribute entry times of non-scheduled flights into
the selected airspace, since they are polled from the entire day,
while we test our model only for a period of 2 hours in the
morning. Flights can be either delayed or rerouted (only one
demand management measure per flight. Delay and rerouting
costs are calculated based on [15], [16]. Delay costs are non-
linear with time, while re-routing costs include fuel costs, crew
costs, soft and hard passenger costs, as well as maintenance
costs [15]. Delay options are discrete and the same for each
flight, namely, 5, 15, 30 or 45 minutes. Each flight has a
number of alternative spatial trajectories: up to 3 nautical miles
longer than the shortest and one flight level higher or below
the one from flight plan (if feasible), all generated using the
NEST and last filed flight plan for each flight.

C. Implementation

Set S, representing the collection of scenarios anticipated
by the decision maker, is populated with 100 scenarios. Once
a policy is obtained, its performance is assessed with a
simulation. Specifically, for a given policy budget h, scenarios
S are iteratively sampled and the cost performance is measured
by solving the problem G(S|h) to optimality via CPLEX
commercial solver. Each simulation is run for 100 iterations.

Figure 1. Percentage reduction of total cost when using cross-border provision
relative to not using cross-border provision per policy (based on 300 scenarios
for evaluation)

We consider low and high uncertainty simulation settings.
In the first, scenarios are sampled from the same pool used
to devise the policies (i.e., S). In the latter, 200 additional
scenarios are added. In other words, in the high uncertainty
case we assume that the decision maker does not anticipate
all scenarios that may happen. We obtain policies under the
following assumptions:

• No cross-border provision.
• Cross-border sector-hours available at the cost of the most

expensive ACC.

D. Findings

The results confirm that enabling cross-border capacity
provision has a significant potential of reducing the average
overall costs (capacity costs along with displacement costs),
see Figure 1. The more risk-averse the policy, the higher
the savings: this is because cross-border provision acts as an
insurance against disruptions (such as capacity shortages or
higher-than usual non-scheduled flight activity). As can be seen
in Figure 2, using cross-border provision allows to drastically
reduce average displacement costs whilst hardly increasing
capacity costs. Also, the relative savings of more risk-averse
policies are larger than without cross-border provision, sug-
gesting that cross-border provision is particularly useful for
risk-averse decision makers. The lowest risk policy ϵ = 1% is
the best-performing policy.

Inclusion of cross-border control may also lead to more
robust cost performance in the face of traffic uncertainties as
illustrated in Figure 3. We would expect that average total costs
will increase as traffic uncertainty is increased (by drawing on
300 evaluation scenarios rather than just 100); this is indeed
the case without cross-border provision. However, with cross-
border provision the average cost remains about the same as
we are able to handle the uncertainty with the flexibility that
cross-border provision gains us.

So far in the analysis, we always assumed that a cross-
border sector hour comes at the cost of a sector hour of the
most expensive airspace. We also conducted some experiments
on increasing this cost further by 10% and 20%, respectively.
For the latter, cross-border capacity is too expensive such that
it never gets procured in our optimization. At the cost rate of
110% the cost of a sector hours of the most expensive airspace,
only under the most risk averse policy ϵ = 1% some cross-
border budget is ordered, leading to similar cost savings as in
the 100% cost case. Accordingly, there will be a maximum
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Figure 2. Using cross-border provision leads also to improved performance
of the more risk-averse policies relative to riskier ones (apart from lowering
total costs overall). Based on 300 evaluation scenarios.

Figure 3. Cross-border provision may lead to more robust cost performance
in the face of increased uncertainty (100 evaluation scenarios means low, 300
scenarios means high traffic uncertainty).

cost for cross-border provision beyond which the latter is no
longer beneficial. A precise analysis into these cost figures is
not sensible on the basis of our case study but would be an
interesting topic for future research.

Except for reducing the total cost to airspace users, the
cross-border provision also improves environmental perfor-
mance in our case study. For instance, if we look at the ϵ = 1%
policy, the inclusion of cross-border at the 100% cost rate on
average reduces the extra distance flown by 38%: from 561nm
to 348nm. Even at the 110% cost rate, the extra distance is
still substantially reduced – by 30% vs. the no-cross-border
scenario, which is a highly indicative finding. Similarly, the
number of heavily delayed flights seems to be tangibly reduced
by the inclusion of cross-border provision. Looking again at
the ϵ = 1% policy, this number drops from an average of 20.9
(median 7) without cross-border, to 13.2 (median 4) at the
100% cost rate, and 14.6 (median 6) if the 110% cost rate is
assumed. This is a very important initial indicator for fairness
of the solution, knowing the strong non-linearity of delay costs

with delay duration.
Clearly, the results of a numerical study will depend on

the choice of parameters, and ours is not different. A critical
setting is the magnitude of the penalty cost for flights that
need to be delayed beyond the considered planning horizon. As
such, the presented results are to be understood as illustration
of the approach in an academic setting; however, the data were
based as much as possible on available real flight and sector
data.

The main insight gained from the numerical experiments
is that cross-border provision leads to particularly strong
cost performance improvements for more risk-averse decision
makers, which is a promising feature.

V. CONCLUSION

For a setting in which the network manager can centrally
plan air navigation service capacity, we present a methodolog-
ical approach on how to optimize capacity budgets for each
airspace alongside cross-border capacity budgets. The findings
on a small case study suggest that there may be significant
potential for cost reduction in cross-border control, especially
for risk-averse decision makers, as long as it can be offered
at ‘reasonable’ rates that do not exceed the regular cost of
capacity dramatically. Cross-border capacity provision acts as
a hedge against the risk of underprovision and its flexibility
has the promise to lead to more robust cost performance in
the face of traffic uncertainty.

In future work, we plan to expand on this work by con-
sidering larger cases as well as tackling the problem with a
stochastic solution approach.
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