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Abstract—The most common air traffic flow management mea-
sure used by the European Network Manager to resolve overloads
(i.e., imbalances between demand and capacity) consists of impos-
ing air traffic flow management regulations, which delay flights
on ground using the first-come, first-served principle. During
busy days, the number of regulations coordinated between the
Network Manager operations centre and the flow management
positions could be high. In this situation, flights may be subject
to several regulations simultaneously. The interactions between
regulations, which depend on the flights that have in common, are
complex and extremely difficult to predict. This paper is founded
on the hypothesis that, during busy days, some of the requested
air traffic flow management regulations could be avoided without
generating overloads elsewhere in the network. The problem of
identifying whether a regulation is essential or not is addressed
by using the adaptive tabu search algorithm and the strategic
oscillations principle. The performance of the proposed algorithm
is assessed by replaying one of the busiest days of 2019.

Keywords—Air traffic flow management; tabu search

NOMENCLATURE

α, ρ ∈ <≥0 Penalty weight multipliers
δ,∆ ∈ Z≥0 Time window slice and width
C Set of constraints to be satisfied
N (x) Neighbourhood of solution x
R Set of regulations
T Tabu list (or set of prohibited solutions)
W Set of monitored time windows
Wi ⊆ W Time windows within the regulation i
X Search space
τ
[
i , τ

)
i ∈ Z≥0 Start and end times of the regulation i

w,v ∈ <‖C‖≥0 Original and adaptive penalty weights
x ∈ X Solution vector
dij : X → Z≥0 Traffic load in si during the window j
fi : X → Z≥0 ATFM delay created the regulation i
p : X → <≥0 Penalty function
pl : X → Z≥0 Violation (infeasibility) of constraint l
q : X × <‖C‖≥0 → <≥0 Evaluation function
ri ∈ Z≥0 Entry rate of the regulation i
si Traffic volume of regulation i
t ∈ Z≥0 Tabu tenure

I. INTRODUCTION

Before the COVID-19 pandemic paralysed the planet, the
air traffic demand forecast for the coming years was optimistic.
According to the most likely scenario of the EUROCONTROL
statistics and forecast, there would be around 16.2M of flights
in Europe in 2040 (53% more traffic than in 2017) [1]. Despite
the fact that these demand figures are more uncertain than
ever due to the unclear impact of the pandemic on the travel
habits [2], the upward trend is expected to resume once the
vaccination process advances and travel restrictions lighten [3].
With air traffic likely to increase, ensuring that demand does
not exceed capacity will become extremely important.

Adapting capacity to demand is the first step in aligning
demand and capacity. This can be accomplished by modifying
the airspace sectorisation, for example. If demand still cannot
be met, air traffic flow management (ATFM) measures are
implemented to match demand with available capacity. In
Europe, the most common ATFM measure consists of limiting
the rate at which aircraft enter the congested traffic volume1

during a given period of time, i.e., to activate a regulation.
The flights subject to a regulation are issued with a ground

delay (i.e., the ATFM delay) that is assigned on a first-
come, first-served basis (widely accepted as equitable), so that
the maximum entry rate in the regulated traffic volume is
not exceeded during the regulated period of time. The basic
mechanisms that are used to assign and manage ground delays
using ATFM regulations are summarised in Section II-A.

At present, the Network Manager (NM) is in charge of
activating regulations in those traffic volumes where it is
necessary, after coordination with the local flow management
positions (FMPs) that requested them when detecting over-
loads. The number of requested regulations that NM has to
process may be in the order of tens or hundreds (depending
on the day), and activating or cancelling a single regulation
could have a massive impact in the total delay, as well as in the
demand figures of traffic volumes elsewhere in the network.

1A traffic volume is related to a single geographical entity (either an
aerodrome, a set of aerodromes, an airspace sector or a point), and may
consider all traffic passing through that entity or only specific flows.



Because of the complex dynamics emerging in the network
in the presence of multiple regulations, predicting the magni-
tude and scope of this chain reaction is extremely difficult [4].
This work is founded on the hypothesis that, especially during
busy days, only some of the requested regulations are actually
indispensable, i.e., a subset of the regulations requested by
FMPs could still solve all traffic overloads with less delay.

Finding the subset of regulations that solves all overloads
could be approached with constraint programming algorithms.
There may exist, however, several feasible solutions to this
problem. The objective of this work is to develop a decision-
support tool to propose the best of such feasible solutions (if
any), i.e., the optimal set of regulations to be activated by NM.
Instead of producing this optimal set from scratch (i.e., defin-
ing new regulations), however, the algorithm proposed herein
takes the regulations requested by the FMPs as starting point,
assuming that otherwise all of them would be activated, and
tries to cancel those regulations that are not strictly necessary.
On this premise, determining the optimal set of regulations to
be activated by NM becomes a binary optimisation problem,
where each regulation can be either active (1) or cancelled (0).

One could be tempted to use supervised learning techniques
because they have shown outstanding results in many ATFM
applications [5]–[7]. For the problem addressed in this paper,
however, the algorithm should not reproduce the historical
data, but to propose better solutions that those applied in
past. Considering this issue, reinforcement learning techniques
could be used to effectively train a policy from thousands of
experiences [8], [9]. Collecting such amount of experiences,
however, would require a very fast and realistic ATFM simula-
tor, capable of accurately determining the effect of cancelling
a regulation under a wide variety of network conditions.

This paper follows a more conservative approach and pro-
poses a variant of the well-known tabu search algorithm [10],
[11] that does not rely on historical data (which may be
polluted with sub-optimal actions) nor on a finite set of
experiences generated with a simulator (which, nonetheless, is
a simplified representation of the real world). The tabu search
implementation presented herein solves a weighted constraint
satisfaction problem (WCSP), which weights are adaptively
updated during the search for transitioning between feasible
and infeasible space in a strategic oscillation fashion [12].

The performance of the algorithm is assessed by replaying
one of the busiest days of 2019 with a real-time simulator fed
with operational traffic data. According to preliminary results,
the algorithm is capable of reducing total ATFM delay of the
network with minimal impact on traffic load and overloads.

II. BACKGROUND

In this paper, the optimisation of applied ATFM regulations
is formulated as a WCSP, which is then solved by using a
tabu search algorithm based on the general problem solver for
combinatorial optimisation problems proposed in [13], which
working principle has demonstrated to be effective in a wide
variety of combinatorial optimisation problems [14]–[16].

Section II-A describes the concept of ATFM regulation, Sec-
tion II-B formalises the WCSP, and Section II-C summarises
the working principle of the solver proposed in [13].

A. Fundamentals of air traffic flow management regulations

As introduced in Section I, nowadays regulations are the
most common ATFM measures in Europe. The activation of
a regulation is the result of a coordination between the local
FMP and the NM when the demand exceeds the capacity.

The essential parameters of a regulation are: the traffic
volume that is regulated, the cause of the regulation (e.g.,
weather, airport capacity, etc.), the start and end times of the
regulation, and the maximum entry rate (in aircraft per hour)2.

For each active regulation, the computer-assisted slot allo-
cation system (CASA) creates and manages a list of time slots.
For example, the list of slots for a 2-hours duration regulation,
with a maximum entry rate of 20 aircraft per hour, would be
composed of 40 slots evenly spaced by 3 minutes. These slots
are assigned to the regulated flights by using a first-come, first-
served policy. In other words, CASA sequences the regulated
flights in the order they would have overflown the restricted
entity (e.g., an airspace) in the absence of ATFM measure [17].

For each regulated flight, the difference between the time
of the assigned slot and its estimated time over (ETO) the
restricted entity (e.g., airspace) is translated into a ground
delay. Note that a flight crossing many restricted entities may
be subject to more than one regulation simultaneously. In this
case, the delay of the regulation that allocates the greatest de-
lay (the most penalising regulation - MPR) takes precedence.
That is, the slot in each one of the other regulations will be
forced according to the delay assigned by the MPR.

Whenever the flight data is updated or the state of the
network changes (e.g., a new regulation is applied, or an
existing regulation is cancelled or modified), CASA tries to
assign the available slot that is closest to the ETO, i.e, the
slot that produces less ATFM delay. If the slot of the ETO is
free, then the flight will not receive delay. It the slot is already
pre-allocated to another flight, then the slot will be given to
whichever flight planned to overfly the restricted entity first.
This mechanism inevitably leads to a chain reaction, since the
flight whose slot has been taken attempts to obtain another
slot, likely by taking the slot of another flight, and so on [17].

Note that regulations interact due to the fact that they have
flights in common. Even a minor change in the flights sequence
of a regulation may create a domino effect and significantly
impact the delay and throughput in other regulations. These
interactions, however, are very difficult to model and predict,
especially when the number of regulations is large.

It should be noted that some flight, such as flights de-
parting from airports outside the ECAC area or flights that
were already airborne when the regulation was created, are
exempted from the CASA rules. For these unconcerned flights,
the closest slot to their ETO the restricted entity is reserved.

2A regulation may be also divided in several periods, with a different
maximum entry rate defined for each period.
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B. Weighted constraint satisfaction problem

Let us define x ∈ X as the solution vector, where X
is the solution space. For instance, for a problem with N
binary variables (as the problem addressed in this paper),
X = {0, 1}N . Let us also define C as a the set of constraints
to be satisfied, and pl(x) : X → Z≥0 as the violation of
the constraint l ∈ C for a specific solution vector x. For
instance, if a constraint l were defined as

∑N
i=1 alixi ≤ bl,

where al and bl are fixed parameters of the problem, then
pl (x) = max

(
0,
∑N

i=1 alixi − bl
)

. Note that this is just an
example and constraints do not necessarily have to be linear.

The goal of a constraint satisfaction problem (CSP) is to
find a solution vector x∗ ∈ X such that pl(x∗) = 0∀l ∈ C,
i.e., a solution vector that satisfies all constraints.

If the constraints are very restrictive, however, a solution
vector that satisfies all of them may not exist. The goal in
this case is to satisfy as many constraints as possible, or to
minimise the sum of constraint violations to the greatest extent.

In many practical applications, some of the constraints must
be satisfied, while others may be violated if it is really difficult
to meet them. In the optimisation slang, the former are known
as hard constraints, and the latter are known as soft constraints.

A widely-used technique to solve highly constrained prob-
lems involving hard and soft constraints consists of assigning
each constraint l ∈ C a weight wl ∈ <≥0, and then minimise
the weighted sum of constraint violations p (x) : X → R≥0:

min
x∈X

p (x) =
∑
l∈C

wlpl (x) . (1)

p (x) is also known in the literature as the penalty function.
In the weighted constraint satisfaction problem (WCSP) for-
malised in Eq. (1), hard constraints are assigned large weights,
while soft constraints are assigned relatively small weights.

Determining the specific weight of each constraint is not
straightforward, yet the quality of the solution is highly
sensitive to w: constraints with large weights are likely to
dominate the solution, while constraints with relatively small
weights may be neglected. To overcome this problem, Ref.
[13] proposed to guide the search by an evaluation function
q (x,v) different from the original penalty function p (x), and
to dynamically adjust the weights v in such evaluation function
during the search based on the sub-gradient method [18].

Although this technique to guide the search and adapt the
weights could be used with many optimisation algorithms [15],
[16], previous works have demonstrated that it provides excel-
lent results when combined with classical tabu search [14].

C. Adaptive tabu search with strategic oscillations

Tabu search is a local search meta-heuristic that has proven
to be effective in solving a large variety of hard combinatorial
problems [10]. Like any other local search strategy, tabu search
starts from a candidate solution x, and then iteratively moves
to a neighbour solution based on certain quality measure. Tabu
search is frequently referred to as the integration of memory
structures into traditional local search algorithms.

Let us define N (x) as the neighbourhood of x, where each
neighbour x′ ∈ N (x) can be reached from x by performing
a single move. For solutions composed of N binary variables
(i.e., X = {0, 1}N ), for instance, the n-flip neighbourhood
(with n ∈ N≤N ) includes all solutions that can be reached
from x by flipping at most n variables. In this paper, the
simplest 1-flip neighbourhood has been implemented:

N (x) = {x (¬xi) | i = 1, 2, . . . , N}, (2)

where x (¬xi) is the result of negating the binary variable xi
in x (i.e., of applying a flip move to variable xi).

The basic form of local search (also known as hill climbing)
only permits moves to those solutions in the neighbourhood
that improve the quality of the current solution, and ends
when no improving solution can be found in the current
neighbourhood. This process yields a local optimum solution
xlocal, which is as good or better than all the solutions in
its neighbourhood N (xlocal). The limitation of this method is
that the resulting local optimum is not necessarily the global
optimum. It should be noted that the quality of the local
optimum typically improves when exploring large neighbour-
hoods. The time required to explore a large neighbourhood,
however, increases dramatically with the number of variables.

The fundamental principle of tabu search is to penalise
moves towards previously visited search spaces, which at-
tributes are stored and managed in the memory structures.
Furthermore, moving to a non-improving solution may be
accepted in order to prevent getting stuck in local optimum.

The most popular memory structure used in tabu search
implementations is the recency-based memory. This memory
structure, as the name indicates, keeps track of the variables
that changed recently (less than t iterations ago, where t is also
called the tabu tenure). The variables that changed recently are
marked as tabu (prohibited), and solutions containing tabu-
active variables cannot be selected. Accordingly, the tabu list
T includes all solution that can be reached from x by flipping
any of the variables that changed in the last t iterations:

T = {x (¬xi) |xi changed in the last t iterations}. (3)

Different from the basic hill climbing strategy, the tabu
search changes the current solution x by the best solution
in the modified neighbourhood x′ ∈ N ′ (x), which excludes
the solutions in T . Furthermore, moving to a non-improving
solution is accepted, provided that it is the best in N ′ (x).

A straightforward approach to quantify the quality of a
solution in the modified neighbourhood for guiding the tabu
search consists of using the original penalty function p (x). In
other words, at each iteration, move to the non-tabu neighbour
that yields to the lowest p (x). This simple approach may
not be a good idea when solving difficult WCSPs, because
the search may be confined to a small space where only the
constraints with very large weights are satisfied. Some of the
constraints with relatively small weights, however, may carry
priceless information to effectively reach the global optimum.
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Strategic oscillations is a technique that has proven suc-
cessful on solving optimisation problems with very tight con-
straints. Roughly speaking, the strategic oscillations technique
consists of crossing back and forth through feasible and
infeasible space, aiming to reach high-quality solutions that
otherwise could be missed if only allowing the local search
algorithm to explore the (rahter limited) feasible space [12].

In this paper, strategic oscillations are achieved by dynami-
cally adjusting the weight of each constraint individually, right
after executing a complete tabu search round. Each tabu search
round attempts to solve the following optimisation problem:

min
x∈X

q (x,v) =
∑
l∈C

vlpl (x) . (4)

where the evaluation function q (x,v) : X × <‖C‖≥0 → R≥0 is
identical to the original penalty function p (x), but replacing
the original weights w by the adaptive weights 0 ≤ v ≤ w.

The tabu search round ends when a maximum number of
iterations K are executed and local optimality (in terms of the
evaluation function) has been achieved at least once (i.e., at
some iteration, xlocal was not improved). Algorithm 1 lists the
basic steps of a single tabu search round for solving Eq. (4).

Algorithm 1 Tabu Search

Require: x,v
1: (xlocal,xglobal)← (x,x)
2: T ← ∅
3: k ← 1
4: Local optimum← False
5: repeat
6: x← arg minx′∈N ′(x) q(x

′,v)
7: if q (x,v) < q (xlocal,v) then
8: xlocal ← x
9: else

10: Local optimum← True
11: end if
12: if p (x) < p (xglobal) then
13: xglobal ← x
14: end if
15: Update the tabu list T
16: k ← k + 1
17: until k ≥ K ∧ Local optimum
18: return (xlocal,xglobal)

The optimisation problem Eq. (4) addressed by the tabu
search round is just an approximation of the original problem
Eq. (1). For this reason, the best solution xlocal may not be a
valid solution in the sense of the original penalty weights w.

The tabu search round is repeated by using the best solution
found in the previous round as starting point. After each tabu
search round, the weight vector v is updated according tho the
violations in the current solution, if compared to those of the
best solution found so far x∗ (the incumbent solution), which
is the best solution among all the xglobal obtained in the past
tabu search rounds (in terms of the original penalty function).

Note that the optimisation problem Eq. (4) could be con-
sidered as a Lagrangian relaxation of the original optimisation
problem Eq. (1), where v are the Lagrangian multipliers.
Accordingly, the following inequality is always satisfied:

min
x∈X

q (x,v) ≤ min
x∈X

p (x) . (5)

On the one hand, if q (x,v) < p (x∗) holds, it indicates
that the weights vl, l ∈ L ⊆ C, are relatively small in
comparison with the original weights, where L is the subset
of constraints for which vl < wl and pl(x) > 0. Accordingly,
these weights are increased by an amount proportional to (1)
the corresponding violation pl (x) , l ∈ L, and (2) how far the
evaluation value of the current solution q (x,v) is from the
penalty value of the incumbent solution p (x∗). This rule to
increase the weights is shown in Operation 6 of Algorithm 2.

On the other hand, if q (x,v) ≥ p (x∗) holds, the weights v
are reduced before applying Operation 6. The reduction factor
is the product of two scalars: α and ρ. The former is a fixed
parameter selected by the user, while the latter is introduced
in so that no weight v becomes larger than the penalty value
of the incumbent solution p (x∗). The rule to decrease the
weights is shown in Operations 2-3 of Algorithm 2.

Algorithm 2 Penalty Weight Update

Require: v,x,x∗
1: if q (x,v) ≥ p (x∗) then . Weights are decreased
2: ρ← min{1, p (x∗)/maxl vl}
3: v ← αρv
4: end if
5: L ← {l ∈ C | vl < wl ∧ pl (x) > 0}
6: vl ← min{wl, vl + p(x∗)−q(x,v)∑

l∈L pl(x)2
pl (x)}, ∀l ∈ C

7: return x

The standard tabu search in Algorithm 1 is repeteadly exe-
cuted, updating the penalty weights after each round according
to Algorithm 2. The complete adaptive tabu search with
strategic oscillations algorithm is described in Algorithm 3.

Algorithm 3 Adaptive Tabu Search with Strategic Oscillations

Require: x,w
1: x∗ ← x
2: v ← w
3: repeat
4: (xlocal,xglobal)← TABUSEARCH (x,v)
5: x← xlocal
6: if p (xglobal) < p (x∗) then
7: x∗ ← xglobal
8: end if
9: v ← PENALTYWEIGHTUPDATE (v,x,x∗)

10: until TERMINATION
11: return x∗

The Algorithm 3 continues until some TERMINATION cri-
terion is met, e.g., the maximum execution time and/or the
maximum number of tabu search rounds are exceeded.
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III. OPTIMISATION ALGORITHM

Given a set of regulations R proposed by the local FMPs,
the objective of this work is to find the optimal subset of
regulations R∗ ⊆ R that minimises the total ATFM delay
without creating overloads elsewhere in the network.

Overloads are measured per traffic volume and time window
as the traffic load above the declared capacity. The declared
capacity, however, does not always reflect the actual capacity.
To avoid the algorithm missing a high-quality solution simply
to avoid overloading traffic volumes where the declared capac-
ity is well below the actual capacity (and thus these overloads
would not cause safety issues), the optimisation problem has
been simplified to: minimise the total ATFM delay without
creating overloads in the regulated traffic volumes during the
applicability period of the corresponding regulations.

The algorithm proposed herein attempts to find the com-
bination of regulations interacting in such a way that the
maximum entry rate of each regulation (which does reflects the
actual capacity) is not exceeded in the cancelled regulations.
In mathematical terms, this problem can be expressed as:

min
x∈{0,1}‖R‖

∑
i∈R

fi (x) (6a)

s.t.
∑
j∈Wi

max (0, dij (x)− ri) ≤ 0, ∀i ∈ R, (6b)

where each element xi of the solution vector x ∈ {0, 1}‖R‖
is a binary variable, which indicates whether the associated
regulation i is active (xi = 1) or cancelled (xi = 0); and
fi : {0, 1}‖R‖ → Z≥0 represents the total ATFM delay of the
flights which most penalising regulation is i. Remember from
Section II-A that a flight may be subject to several regulations
simultaneously, but its assigned ATFM delay is determined by
the MPR. Note as well that R∗ = {i ∈ R |xi = 1}.

In Eq. (6), dij : {0, 1}‖R‖ → Z≥0 represents the traffic
load (in terms of entry counts) in the regulation i during the
time window j, and ri is the entry rate of that regulation3. As
discussed in Section II-A, the interactions between regulations
are very difficult to model and predict due to the mechanisms
used by CASA to allocate slots. Accordingly, both fi and dij
are non-linear functions of x, i.e., the ATFM delay and traffic
load in each regulation are determined by which regulations
i ∈ R are active (xi = 1) and which are not (xi = 0) .

The time windows j ∈ W in which traffic load is aggregated
slice every δ minutes, and are ∆ minutes width. If δ = 20
and ∆ = 60, for instance, the set W would be composed of
{[00:00, 01:00), [00:20, 01:20), [00:40, 01:40), . . .}.

In this paper, only the time windows within the applicability
period of the proposed regulation are monitored. That is:

Wi =
{

[nδ, nδ + ∆)∀n ∈ Z≥0 | τ [i ≤ nδ < τ
)
i

}
, ∀i ∈ R,

(7)

3Extending the formulation to regulations composed of multiple periods is
straightforward and has not been included for the sake of clarity.

Figure 1. With τ [i=01:00 and τ )i =03:10, δ=20 and ∆=60, Wi={[01:00, 02:00),
[01:20, 02:20), . . . , [03:00, 04:00)}

τ
[
i (inclusive) and τ

)
i (exclusive) are the start and end times

times of the regulation i, respectively. Figure 1 shows the time
windows (in red) monitored for an hypothetical regulation.

The optimisation problem Eq. (6) can be transformed into
a WCSP of the form Eq. (1) by simply defining the following
set of constraints C = Cc ∪ Cf , where:

Cf = {fi (x) ≤ 0 | i ∈ R} , (8a)

Cc =

∑
j∈Wi

max (0, dij (x)− ri) ≤ 0 | i ∈ R

 . (8b)

On the one hand, Eq. (8a) represents delay constraints,
which objective is to decrease the ATFM delay of each
regulation as much as possible. In the best of the scenarios, the
algorithm would be able to cancel all regulations (i.e.,R∗ = ∅)
without creating overloads and therefore fi (x) = 0∀ i ∈ R.

On the other hand, Eq. (8b) represents the capacity con-
straints of the original optimisation problem Eq. (6b). Note
that, using this formulation, the number of constraints is
exactly twice the number of regulations, i.e., ‖C‖ = 2 ‖R‖,
because each regulation is associated a capacity constraint and
a delay constraint. The violation of each constraint l ∈ C in
the Eq. (1), taking into account the definitions of Eq. (8), is:

pl (x) =

{
fi (x) if l ∈ Cf∑

j∈Wi
max (0, dij (x)− ri) if l ∈ Cc,

(9)

The generic adaptive tabu search with strategic oscillations
presented in Section II-C could be used to solve this problem.
Within each round of tabu search (Algorithm 1), a naı̈ve
evaluation of the neighbourhood of x in Operation 6 would
require to run ‖R‖ times the CASA algorithm and perform a
network impact assessment (NIA) to compute the new ATFM
delay created by each regulation as well as the traffic load in
each traffic volume and time window. In the high-fidelity, real-
time simulator used in this study, evaluating a single solution
x takes between 3 and 10 seconds (depending on the number
of flights and traffic volumes to be monitored in the NIA).
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The volatility of the network is very high, requiring the
algorithm to find a solution (ideally) in less than 5 minutes.
For this reason, the algorithm should converge after evaluating,
at most, 100 different solutions x. For a typical problem with
20 regulations, the number of possible combinations assuming
that each regulation can take two states (active or cancelled)
is 220 ' 106, which implies that the algorithm is only allowed
to explore around 0.01% of the total search space.

In order to reduce the number of solutions evaluated in
each iteration of the tabu search round (Algorithm 1), the
aspiration plus strategy has been implemented [19]. This
strategy establishes an aspiration threshold for the quality of
a move to be explored, and examines moves until finding one
that satisfies this threshold. In this paper, the threshold is set
to the evaluation value in the current solution, i.e., q(x,v).

After finding a candidate x′ for which q(x′,v) < q(x,v)
holds, plus additional moves are examined, and the best
move (in terms of the evaluation value) is selected. In order to
ensure that neither too few nor too many moves are examined,
at least min_moves moves and at most max_moves are
examined. Both plus, min_moves and max_moves are
fixed parameters selected by the user. Note that by setting
plus = max_moves = ∞, one explores the whole neigh-
bourhood, just like in the standard tabu search.

The order in which moves are evaluated is really important
when using the aspiration plus strategy. During the evaluation
of the neighbourhood of x, the moves that have not yet been
explored are randomly selected to encourage diversification.
The probability of exploring a move (i.e., activating a can-
celled regulation or cancelling one that is active) is propor-
tional to the amount of evaluation value that can be attributed
to the corresponding regulation in the current solution.

Therefore, each unexplored move is evaluated with a proba-
bility proportional to the penalised amount of violations caused
by the corresponding regulation in the current solution.

Note that Algorithm 3 has three parameters: α, K and t. The
criteria proposed in Ref. [13] has been adopted to determine
the values of α and K. Regarding t, the effective tabu tenure
t′ is randomly selected from the set {t − 1, t, t + 1} in each
iteration of the tabu search, aiming to promote diversification,
i.e., when constructing the tabu list, t′ is used instead of t .

IV. ILLUSTRATIVE EXAMPLE

The generic adaptive tabu search with strategic oscillations
presented in Section II-C was tailored to the problem of finding
the most effective subset of ATFM regulations (from those
proposed by the local FMPs) according to Section III.

In order to obtain representative results, the validation exer-
cise was performed by using the Network Manager validation
platform (NMVP), which fully replicates the real Network
Management operational systems (including CASA).

The NVMP can be used with live traffic for shadow mode
trials, and also with historical traffic to replay past days. The
validation exercise was performed by replaying a busy day in
real-time, iteratively calling CASA and performing a NIA to
evaluate each solution x during the optimisation process.

The metrics used to assess the performance of the algorithm
include: the difference of ATFM delay as a result of cancelling
the regulations suggested by the algorithm (if any), as well as
the variation in the traffic load, in terms of entry counts.

Remember that the algorithm operates by monitoring the
ATFM delay and overloads only in the regulations that are
being optimised. Cancelling a specific group of regulations,
however, may have substantial consequences throughout the
network. Accordingly, the optimisation process must be always
followed by a comprehensive NIA to verify the solution.

Section IV-A describes the setup of the validation exercise.
The main results of the optimisation process are presented
in Section IV-B. Finally, a comprehensive network impact
assessment after cancelling the regulations proposed by the
algorithm is thoroughly discussed in Section IV-C.

A. Setup of the validation exercise

The real-time simulation in the NVMP started at 07:40 AM
of the 27th of June 2019, when 120 regulations were active in
the network, generating around 43K minutes of ATFM delay.
For this particular validation exercise, the objective of the
algorithm was stated as to find effective regulations caused by
air traffic control (ATC) capacity issues in a sub-region com-
posed of all traffic volume sets in LE*, LF* and ED*, which
embrace Spain, France, Belgium, Germany, Luxembourg and
the Netherlands. The total number of regulations due to ATC
capacity issues applied in the operational system when starting
the simulation (at 07:40 AM) over the sub-region of interest
was 21, generating 5343 minutes of ATFM delay.

The algorithm was executed without pausing the clock,
aiming to replicate as closely as possible a real-world situation
where the execution time cannot be neglected.

Table I lists the parameters of the optimisation algorithm
that were selected for this validation exercise.

TABLE I. PARAMETERS OF THE OPTIMISATION ALGORITHM

Parameter Value

α 0.5
t 3
wl, l ∈ Cf 0.1.
wl, l ∈ Cc 18.
plus 5
min_moves 7
max_moves 15
Maximum number of solutions 100

According to Table I, 1 single overload was penalised as 180
minutes of ATFM delay. The algorithm was allowed to explore
100 solutions out of the ∼ 2 · 106 possible combinations in
the solution space {0, 1}21. After execution, the suggestion of
the algorithm was simulated, followed by a NIA.

B. Results of the optimisation

Figure 2 shows the set of applied regulations before (a) and
after (b) the optimisation process. Table II shows the number
of flights within each regulation as well as the generated
ATFM delay, before and after the optimisation process.
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(a) Before optimisation R (21 regulations) (b) After optimisation R∗ (13 regulations)

Figure 2. Applied regulations - Figure generated with the research network strategic monitoring tool (R-NEST)

Cancelled regulations (in red) show a significant reduc-
tion of the generated ATFM delay, as expected. Some of
these regulations, however, still create some delay after being
cancelled. The reason of this counter-intuitive result is that
some of the regulated flights may be already airborne or
very close to the calculated off-block time (COBT), and in
these specific circumstances cancelling the regulation has no
effect. Regulations that were deemed effective (in black) either
maintain or increase the ATFM delay before optimisation.

The local effect of cancelling the regulations not in R∗ was
a reduction of 1380 (26%) minutes of delay. As mentioned
previously, however, the algorithm just solved a local problem,
and one needs to perform a NIA in order to ensure that
cancelling the regulations also has a positive effect network-
wide (and not only in the sub-region being optimised).

TABLE II. IMPACT FOR REGULATIONS IN R

Flights Delay
Regulation i Before After Before After Difference

KWUR327E 183 181 634 262 -372
KFFM2427 132 127 345 0 -345
LELVL27 93 58 280 0 -280
E4N27 246 175 278 0 -278
EDG7NO27 57 35 236 3 -233
EDG4DK27 51 22 103 0 -103
EDG3GH27 33 26 57 20 -37
KOSE1O27 52 46 87 54 -33
LEBLA27 44 44 107 107 0
E5R27 278 278 0 0 0
EDG3GI27 47 47 222 222 0
KWUR1C27 67 67 132 132 0
K1UFX27 67 67 50 50 0
EDG2NT27 44 44 165 165 0
LEGE1V27 72 72 132 145 +13
KWUR2427 127 127 537 552 +15
RQXU27E 51 51 145 170 +25
EDG3TA27 34 34 365 399 +34
EDWHRZ27 70 70 271 312 +41
LELVU27 98 98 518 561 +43
YD6WH27M 145 145 679 809 +130

Total 1991 1814 5343 3963 -1380

C. Network impact assessment

Tables III and IV summarise the main results of the NIA.
Table III shows the change in flights and generated ATFM

delays for the 120 regulations that were applied at 07:40 AM
in the network, before and after cancelling the 8 (out of 21)
regulations proposed by the algorithm. Regulations are ordered
by delay difference, i.e., the 10 first regulations are those that
decreased more the delay, while the 10 last regulations suffered
an increase of delay after putting in place the suggestion of
the algorithm. The network-wide effect of cancelling the 8
regulations was a reduction of 2209 (5%) minutes of delay.

Table IV shows the change in overloads (in terms of
hourly entry counts above the declared capacity) for the traffic
volumes that were impacted by the 8 cancellations. As in
Table III, results are sorted by difference (after-before), from
most negative to most positive. According to Table IV, the
impact was rather neutral, with some traffic volumes increasing
the amount of overloads and some others decreasing it. The
network-wide effect was a residual reduction of 3 overloads
(0.16%), and the narrow distribution ranged from -2 to +2.

V. CONCLUSIONS

This paper proposed a meta-heuristic algorithm based on
adaptive tabu search with strategic oscillations to detect ef-
fective regulations from all those proposed by the local flow
management positions in a sub-region of the network.

Initial results suggest that the algorithm is able to identify
effective regulations by exploring a limited number of solu-
tions in the search space, thus being suitable during the tactical
phase of operations. Furthermore, the outcome of the network
impact assessment indicates that the local solution has minor
impact (in terms of delays and entry counts) network-wide.

In future work, the algorithm must be tested on more
scenarios in order to obtain statistically meaningful results
from which to draw solid conclusions. Furthermore, a com-
prehensive comparison with other algorithms, like harmony
search, adaptive large neighbourhood search, or branch and
bound is also foreseen in future publications.
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TABLE III. NETWORK IMPACT ASSESSMENT: DELAYS

Flights Delay
Regulation i Before After Before After Difference

KWUR327E 183 181 634 262 -372
KFFM2427 132 127 345 0 -345
LHLYBA27 290 290 1410 1074 -336
LELVL27 93 58 280 0 -280
E4N27 246 175 278 0 -278
EDG7NO27 57 35 236 3 -233
KNTM3C27 156 156 1583 1356 -227
LOWB3527 65 65 577 395 -182
LOWB1227 155 155 2021 1906 -115
EDG4DK27 51 22 103 0 -103

...
EDG3TA27 34 34 365 399 +34
LHWSLM27 177 177 571 610 +39
EDWHRZ27 70 70 271 312 +41
LPPTA27 120 120 3679 3721 +42
LELVU27 98 98 518 561 +43
EHAMA27M 224 224 2306 2349 +43
LHENU27 116 116 241 296 +55
EGLLA27M 112 112 2476 2556 +80
KNTM1C27 90 90 1386 1479 +93
YD6WH27M 145 145 679 809 +130

Total 7304 7127 43051 40842 -2209

TABLE IV. NETWORK IMPACT ASSESSMENT: OVERLOADS

Traffic volume Period Before After Difference

LFEUBN 08:20 - 11:40 8 6 -2
EG12GCLE 06:20 - 08:40 7 5 -2
LEMDARR 08:20 - 10:40 2 0 -2
LOVVWB12 06:00 - 11:20 15 13 -2
LFEKR 11:00 - 11:40 2 1 -1
MASB5WL 05:40 - 11:00 10 9 -1
LOVVE15 07:20 - 12:20 13 12 -1
LHLYBALL 09:20 - 10:40 2 1 -1
LCWU 10:00 - 12:00 5 4 -1
LDULWX 07:40 - 08:20 2 1 -1
...
LPCEU1 11:20 - 11:20 0 1 +1
LFMY34 09:20 - 10:20 2 3 +1
LFEKHR 08:40 - 15:00 17 18 +1
EDG1LA05 07:20 - 07:20 0 1 +1
LFMMOML 08:00 - 09:40 2 3 +1
EGGWARR 10:40 - 15:40 4 5 +1
EGDTS 05:40 - 07:20 4 5 +1
EDG4DKB 05:40 - 08:40 0 1 +1
LOVVWB35 07:00 - 11:20 14 16 +2
LYBATWES 06:40 - 11:20 14 16 +2

Total - 1831 1828 -3
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