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Abstract—The approach phase of a flight represents a safety-
critical flight operation that requires close and timely coopera-
tion between pilots and tower controllers leading to a smooth
landing operation. Go-around or missed-approach procedures
are in place to discontinue an unsafe landing. These procedures
may generate further safety concerns due to their complex
manoeuvre and time constraints. Due to the availability of high-
fidelity air traffic data, such as ADS-B, new data-driven metrics
can be derived in order to enhance the situational awareness of
tower controllers and thus, increase the safety level of landing
operations. This paper proposes a novel safety metric based on
machine learning techniques that may assist tower controllers in
detecting and predicting go-around events. First, a data-driven
model is developed for labeling go-around events. Then, features
are engineered for a tree-based learning model to predict go-
around events. The model is trained, validated, and tested using
ten months’ of ADS-B data for flights arriving at Philadelphia
International Airport (PHL), comprising 132,118 flights with 662
go-around events. Results demonstrate that the best prediction
results are found at 2 NM away from the runway threshold. For
the down-sampling data, the model is able to predict 56% of the
go-around with only a 10% false-positive alert rate, while for the
full data set the model is able to detect 33% of the go-around
with a 25% false alert rate. The proposed model outperforms
state-of-the-art methods in terms of decreasing the false-positive
alerts in the system by 60%. The proposed model achieves a
generic solution that is not specific for a single runway, and
therefore can be deployed at other runways without a need for
extensive model training.

I. INTRODUCTION

The approach/landing flight phase records the highest
operational risk occurrence and accounts for half of the
global aviation accidents and incidents, such as runway excur-
sions/incursions, undershooting/overshooting and unstabilized
approaches. In order to mitigate these risks, go-around (or
missed-approach) procedures are put in place to discontinue
an unsafe landing. While these procedures are designated to
prevent hazardous landings, they may generate further safety
concerns due to their complex manoeuvre and time con-
straints. In fact, go-arounds are usually performed close to the
ground, at low altitude and low speed. Thus, several actions
should be taken in a short period of time including changing
the altitude, thrust, flight path, and aircraft configuration while
ensuring no conflict with surrounding traffic. As a result, the
role of air traffic controllers (ATCs) is vital in ensuring safe
and efficient go-around operations. The transition towards the
digitisation of airport control towers brings more challenges
in safely conducting go-around manoeuvres.

Situational awareness is the key to engage tower controllers
as early as possible in order to establish effective communi-
cation between controllers and pilot, and to help controllers
advise safe, efficient and optimal actions. Therefore, the cur-
rent paper proposes to augment the tower control environment
with predictive tools that increase the situational awareness of
tower controllers and enhance the safety of airport operations.

Recent developments in the Air Traffic Management (ATM)
have demonstrated the potential of Data Analytics and Ma-
chine Learning (ML) in addressing complex problems in
ATM [1], [2], for which traditional techniques, based on
mathematical models and hand-crafted rules, fail to deal with.

This paper proposes a data-driven and machine-learned
safety metric to assist tower ATC with increased situational
awareness. In particular, this paper develops a machine learn-
ing prediction model for go-around events when an aircraft
is in its final approach phase.

The concept diagram of the proposed approach is illustrated
in Figure 1. First, the data sets are collected from different
sources, specifically surveillance, airspace and meteorological
data. Then, an ML model is trained to predict whether the
flight is going to perform a go-around in its approach/landing
phase. When the aircraft reaches 10 NM from the runway
threshold, the model starts predicting the go-around event.
The prediction is subsequently updated every 2 NM in or-
der to consider the change in the flight profile during the
approach.

The paper is organized as follows. First, Section II includes
a background of the considered problem, the main previous
works that belong to the scope of the topic, and illustrates
the current research gaps. Then, Section III highlights the
proposed approach. Section IV discusses the computational
results. Finally, conclusions are drawn in Section V.

II. BACKGROUND

A. Go-around Problem Motivation
Go-around is a manoeuvre designated to discontinue a

landing deemed to be unsafe. It consists of a set of instructions
for a pilot to abandon his/her approach to landing. A pilot
on an instrument flight rules (IFR) flight plan making an
instrument approach should execute the published go-around
procedure or proceed as instructed by the ATC.

When conducting a go-around procedure, the ATC has to
instruct the pilot tactically, and this manoeuvre is considered
challenging for both ATC and pilots due primarily to the time
pressure. In fact, the causes leading to a go-around can be



Figure 1. A data-driven prediction model of Go-Around event for an aircraft in its final approach phase.

unanticipated and recognized after the decision height, or even
immediately prior to touchdown. Thus, the timely cooperation
between the pilot and ATC is hard to establish. The study
in [3] demonstrates that the startle effect included in the go-
around situation reduces the pilot’s ability to cope with the
complexity of the manoeuvre. Their findings also show that,
if the ATC gives last-minute instructions which differ from
the published procedure, the pilot may be overloaded while
performing crucial actions during the go-around. This may
lead to critical trajectory deviations during the go-around,
which has been found to be a precursor of accidents [4].
As a result, many pilots do not comply with the airline
company’s go-around policy, and they tend to continue the
landing even when a go-around is required [5]. The flight
safety foundation [5] claims that 83% of runway excursions
could have been avoided with a decision to go-around, thus
preventing 54% of all accidents.

When a go-around is initiated, the ATC may need to
vector the aircraft at a low altitude. In this case, ATC needs
to consider several flight parameters such as the aircraft’s
position, heading and speed, along with a clear representation
of the aircraft’s surrounding traffic. Vectoring a go-around
may also include holding the aircraft for queuing purposes.
This may increase the complexity of the manoeuvre. Thus,
managing a go-around may increase the cognitive workload
on controllers, especially when dealing with tightly spaced
arrivals on a final approach path.

These challenges related to go-around manoeuvres provide
an opportunity to research and investigate new metrics that
help in improving safety of air-side airport operations. In fact,
there may be a need to couple the tower control environment
with alert systems that increase ATC situation awareness for
more optimal, efficient, and safer operations.

B. Research Question
The objective of this research is to develop a data-driven

machine learned safety metric to assist tower ATC in the
prediction of go-around events. The main research question
is as follows: How can a machine learning model be trained
to predict go-around events, with sufficient look ahead time,
for flights in their final approach phase?
The motivation of this research is to enhance the situational
awareness of tower ATC, but also to implement an accurate
and trustworthy prediction model for an airport with multiple

runway operations. Firstly, with an effective prediction of
a go-around event, the tower ATC can prepare for a re-
sequencing prior to the actual initiation of the go-around.
Secondly, accurate prediction (low rate of false alarms) of
go-around events may reduce the workload of ATC.

C. Literature Review of Go-around Prediction and Detection
Several research works have investigated the criteria and

factors that lead to go-around manoeuvres. The main factors
are unstable approach [6], weather conditions [7], [8], and
runway configuration change [8].

However, few works have been proposed to predict and
detect go-around in the final approach phase; and thus far,
effective approaches to deal with this research problem are
very limited. Previous works use three main approaches,
namely a data-analytic approach, statistical Markov model
and decision tree-based model, which will be elaborated
further in the following section. As per imbalanced data-
set problems, the evaluation of different prediction models
is performed via two metrics: the number of go-arounds that
are correctly detected (Recall) and the number of correct go-
arounds in the prediction results (Precision).

1) Data-Analytic Model
The work in [7] is among the first studies that attempts to

predict a go-around manoeuvre. It investigates the operational
factors that lead to a go-around event. The authors apply
a statistical approach to explore features such as airborne,
ground operations or weather that are most likely to affect
nominal operations immediately preceding a go-around. Then
the authors present an alert system for go-around prediction.
A linear discriminant analysis (LDA) mechanism is applied
to classify go-around from nominal trajectories in each time
sample. Experiments are conducted with four years of air
traffic departing or arriving at one of the three airports in
the Bay Area, namely San-Francisco International Airport
(SFO), Oakland International Airport (OAK) and San Jose
International Airport (SJC), from January 2006 to December
2009. The data used includes flight tracks recorded by the
secondary radar located at OAK and ground data collected
from the Aviation System Performance Metric (ASPM) flight
database. Findings show that the primary causes of go-
arounds are operational errors such as runway incursion or
late runway departure. However, the authors state that the
prediction results were not successful. For example, when
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15% of the trajectory samples were in threat alert (trajectory
segments that differ from nominal trajectories), only 39%
of go-arounds could be identified. The authors justify the
limitation of their finding is due to the imbalanced nature
of the dataset.

2) Statistical Markov Model
The work presented in [8] proposes a causal effect sta-

tistical study on the factors that contribute to a go-around.
Also, an approach to label go-around samples from nom-
inal samples is proposed. This approach is similar to the
labelling method presented in [7], and it relies on flight
altitude changes. For instance, if a flight is in the descent
phase and climbs more than 400 feet, then a go-around
event is captured. The same author then proposes in [9] a
probabilistic graphical model based on Input-Output Hidden
Markov Model (IO-HMM) to make sequential predictions of
go-around probabilities for a flight approaching its destination
airport. When an aircraft reaches 10NM from the airport, a
short-term prediction is performed every 1NM. Experiments
are conducted with six months of data for flights arriving
at JFK airport, from 1st July 2018 to 24th December 2018.
The flight records dataset is collected from the Integrated
Flight Format (IFF) and Reduced Data (RD) summary of
the NASA Sherlock Data Warehouse, and the ground data is
collected from the airport surface detection equipment Model
X (ASDE-X) data. The number of go-around events during
the considered period was 371 out of 100,032 flight instances.
The dataset was down-sampled to correct for biasing during
the training of the model. For detection, findings show that
only 41.7% of the go-arounds are correctly classified. The
final evaluation of the prediction model shows that only
15.5% of the predicted go-around are correct. This is due
to the fact that the implemented objective function prioritized
detecting a go-around over false alarms in the system.

3) Decision Tree-based Model
To mitigate the data imbalance problem, the work in [10]

presents a data-driven online prediction model to predict
the aircraft landing speed. The authors claim it is the most
important factor in evaluating the landing performance and
detecting critical landing. The main objective of the paper
is to aid decision-making and risk assessment during the
approach and landing phases of flight, particularly during a
go-around. Their proposed methodology includes two steps.
First, an offline model component is used to process, analyze,
and train the prediction model. Then, the second component
consists of an online process in which pre-trained models are
deployed to provide a real-time prediction of critical landing
metrics for new flight data. A Random Forest Regression
algorithm is applied for building the prediction model. The
data used are retrieved from the Flight Operations Quality
Assurance (FOQA), which is a process that analyses data
collected from Flight Data Recorders (FDR). It includes
18,000 flight from 70 airports. Findings show that their model
outperforms the state-of-the-art methods in predicting landing
speed when the aircraft is at an altitude of 300 feet (≈ 18 sec
before touchdown). However, a go-around is a very complex
manoeuvre that may be due to several factors (unstable

approach, weather, visibility, or presence of obstacles in the
runway) other than the aircraft landing speed. Furthermore,
based on our initial experiments on the data, most of the go-
arounds are initiated before reaching 300 feet, the altitude
from which the prediction is performed.

In [11], the authors propose a data-driven model to predict
the probability of go-around events using different classifi-
cation machine learning model based on decision-tree algo-
rithms. Their methodology includes two approaches. The first
is a macroscopic model that predicts the occurrence of a go-
around within the next hour, while the second predicts for
each single flight the likelihood to perform a go-around when
it reaches 10 Km (≈5.4 NM) from the runway threshold.
Experiments were conducted with 3.5 years of arrival flight
to Zurich airport on runway 14. The data collected consists of
ADS-B flight records provided by the OpenSky Network. It
includes almost 250,000 landing flights with 715 go-arounds.
The authors apply a down-sampling technique to mitigate to
the data imbalance problem. The results show that their model
is able to detect 50% of the go-arounds, however, only 2%
of the predicted go-arounds are actual go-around events.

D. Research Gaps
The main gaps identified the presented state-of-the-art

research works are as follows:
• Specificity of the solution: all the previously discussed

works propose a specific solution for a single runway.
By using features associated with a specific runway, the
solution may be highly dependent to the application case,
and may not provide similar results for airports with
multiple runways. Particularly, in the case of DTC, the
solution should be adaptable to different runway systems.
In fact, DTC, by its construction, is dedicated to provide
services to multiple runways.

• Prediction accuracy: a go-around prediction system is
primarily dedicated to the ATC in order to increase their
situation awareness and provide them with the possibility
to better manage the runway usage in the case of a
potential go-around. However, the go-around prediction
models proposed in the literature possess a very low
accuracy. For example, in [11] only 2% of the predicted
go-around are actual go-around events observed in the
data. A slightly better result is proposed by [9], where
15.5% of the predicted go-around are correct. This low
accuracy increases the rate of false alerts in the system.
As a result, having many false alerts reduces the system’s
trustworthiness and disrupts the ATC attention, which
increases their workload.

• Data imbalance: this is a common issue when dealing
with anomaly prediction such as predicting go-around
occurrence which is a rare event. In a typical anomaly
prediction problem, data imbalance is solved by over-
sampling or under-sampling the dataset. However, these
methods fail to address the more inherent issue that
go-arounds occur during standard phases of operation
and therefore, go-around samples will generally have
features closely aligned with nominal samples. In other
words, nominal and go-around samples are very poorly
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Figure 2. System diagram for the proposed go-around prediction model.

separated in the state space which may cause interference
with causal relationships [7], [9].

• Go-around trajectory labelling: labelling go-around tra-
jectories from the nominal samples is a very important
step for a machine learning-based approach. Both works
in [7], [8] use the altitude increase in the flight profile
as the only criterion to identify a go-around. However,
flights in the approach phase may increase altitude due
to other factors such as to correct the approach profile
or instructed by the ATC. Furthermore, if the go-around
is initiated close to the missed approach altitude, the
increase in altitude may not be significant, less than 400
feet. Therefore, the change in altitude should not be the
only criterion to recognize a go-around, and other criteria
should be investigated.

III. PROPOSED APPROACH
The current research work proposes a go-around prediction

model when the aircraft is at its final approach phase. First, a
go-around prediction model is build using historical surveil-
lance, airspace and meteorological data. Then, the trained
prediction model is used for the prediction of go-around when
the aircraft reaches 10 NM from the runway. Subsequently,
using the new records of flight data while the aircraft is
moving towards the airport, the proposed algorithm updates
the go-around prediction every 2 NM. The model eventually
either detects an actual go-around or confirms a successful
landing (figure 1).

The flow chart of the proposed approach is presented in
Figure 2. The different components of the flow chart are
detailed in the following sections.
A. Data set

This work considers Philadelphia International Airport
(PHL) as the case study to perform our experiments. PHL
is a hub airport, and is one of the airports that records the
highest rate of go-arounds in the United-States [12]. The
current research deploys several data sets that are collected
from a range of different data sources:

• Air traffic data: the 4D flight trajectories data of
this study correspond to the Automatic Dependent
Surveillance-Broadcast (ADS-B) flight data extracted
from the OpenSky Network [13]. For each flight trajec-
tory, ADS-B data are recorded with unequal frequency.

Thus, interpolation is performed on trajectory points
in order to fix the time difference between 2 adjacent
records as 1 second;

• Meteorological data: the meteorological data of Philadel-
phia International Airport (PHL) station are extracted
from historical Meteorological Aerodrome Reports
(METAR) of Iowa Environmental Mesonet from Iowa
State University [14]. A single METAR reports the
weather conditions around the specified aerodrome and
a new METAR is generated every 30 minutes; and

• Flight and aircraft data sets: these are data collected from
open-access resources that provides information such as
the aircraft type, Wake Turbulence Category (WTC), and
the operator for flights defined by ICAO code. They
also provide flight timings (arrival time/departure time/
touchdown time, etc.) for US airlines. For flights that do
not belong to US airlines, flight timings are extracted
from the tracking data points.

B. Data Processing
1) Noise Filtering and Outlier Removal

The data used in the current study includes arrival and
departure flights to/from PHL from March 01, 2019 to De-
cember 31, 2019. The first step of the data processing involves
noise filtering and outlier removal. This consists of remov-
ing duplicated flights and flights with incomplete trajectory
points. Furthermore, Visual Flight Rules (VFR) aircraft are
also removed. Those flights are detected through the squawk
code which is provided with ADS-B records. After this there
remain 132, 118 arrival flights and 125, 126 departure flights.
The inconsistency between arrival and departure counts is
probably due to aircraft that are not equipped with ADS-B,
thus not provided in the data.

2) Runway Assignment to Flight Trajectories
The second step of the data processing includes the as-

signment of flight trajectories to different runways. PHL
includes four runways namely: 09R/27L, 09L/27R, 17/35,
and 26/08. In order to identify the departure/arrival runway
for each set of trajectory tracking data points, we use two
metrics. First, the flight heading is used to identify the
direction of the departure or arrival. The flight heading is the
only measurement used to identify flight departing/arriving
from/to runway 17/35. However, for the rest of runways, the
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TABLE I. SUMMARY OF ALL CONSIDERED FEATURES. THE GREEN HIGHLIGHTED FEATURES ARE CONSTRUCTED FEATURES.

Type Name Description
Icao24 A unique 24-bit identifier of the aircraft.
WTC The wake turbulence category of the aircraft.
Typecode The aircraft type.
Callsign The flight call-sign.
Operator The aircraft operator.

Flight Information

First runway The flight assigned runway. If the flight changes its runway after a go-around, the first assigned runway is considered.
Latitude The latitude of 3-D position of the aircraft.
Longitude The longitude of 3-D position of the aircraft.
Altitude The altitude of 3-D position of the aircraft.
Heading The aircraft heading.
Ground speed The aircraft ground speed.
Vertical rate The descent vertical rate.
HOD The hour of the day.
DOW The day of the week.
DOM The day of the month.

Flight parameter

Time period Early morning, morning, noon, evening, night, or late night.
Angle runway The angle with the runway centreline.
Glide slope The glideslope.Flight landing performance metrics
Energy The aircraft energy.
NB DEP FLT BEFORE (5MIN/10MIN/15MIN) Number of departure flights 5min, 10min, and 15 min before the aircraft reaches the considered radius.
NB ARR FLT BEFORE (5MIN/10MIN/15MIN) Number of arrival flights 5min, 10min, and 15 min before the aircraft reaches the considered radius.
NB DEP FLT AFTER (5MIN/10MIN/15MIN) Number of departure flights 5min, 10min, and 15 min after the aircraft reaches the considered radius.
NB ARR FLT AFTER (5MIN/10MIN/15MIN) Number of arrival flights 5min, 10min, and 15 min after the aircraft reaches the considered radius.
dep (time/type/category) before The time difference with the preceding departure flight on the same runway, its aircraft type and category.
dep (time/type/category) after The time difference with the following departure flight on the same runway, its aircraft type and category.
arr (time/energy/type/category) before The time difference with the preceding arrival flight on the same runway, its energy, aircraft type and category.

Airport performance metrics

arr (time/energy/type/category) after The time difference with the following arrival flight on the same runway, its energy, aircraft type and category.
direction
gust
temp

The wind direction, gust, and temperature.

vsby The visibility.
sky cover The sky cover (clear, few, scatter, broken, or overcast ).
sky cover altitude The sky cover altitude.
sky cover index A ratio that indicates the severity of the sky cover condition.

Meteorological data

wind runway The wind direction compared to the runway heading.

flight heading results in three possible runways. Thus, the
second metric used consists of framing a polygon around
each runway and computing the overlap between each flight
trajectory and the different polygons.

C. Go-around Labelling
As discussed in section II-D, previous works on go-around

label identification apply the flight altitude as the only cri-
terion to determine whether a flight trajectory includes a
go-around manoeuvre. Based on data analysis, it is found
that considering only the altitude can be misleading for the
identification a go-around. In fact, flights may increase their
altitude due to other factors such as to align with the glide-
slope or to avoid clouds. To avoid this issue, the proposed
go-around identification process includes two steps. In the
first step, the flight altitude increase is captured. Then, if the
altitude is increased by more than 300 feet, the second step
of the algorithm checks if the flight 2D trajectory (latitude,
longitude) intersects with itself. Figure 3 depicts the go-
around detection algorithm. For each flight trajectory, the
algorithm iterates among all the trajectory segments (which
are defined by two consecutive data points as highlighted
in figure 3), and for each iteration checks the intersection
between the active segment, which is outlined in red in
figure 3, and the preceding trajectory path, which is outlined
in green in figure 3. If an intersection is found, a go-around
is identified.

As this method is computationally expensive, we use the
Ramer Douglas Peucker (RDP) algorithm [15] to reduce the
number of trajectory points in each flight. RDP is a trajectory
simplification algorithm that decimates a curve composed of
line segments to a similar curve with fewer points. Data
exploration shows that a go-around may occur even when
the flight trajectory does not intersect with itself. This can
occur when the aircraft changes its landing runway following
a go-around. An example of such a trajectory is shown in

Figure 3. An example of a flight trajectory intersecting with itself in the case
of a go-around flight.

figure 4. Here it is seen that the aircraft intends to land at
runway 35, but it performs a go-around and lands at runway
27R without a trajectory intersection. To identify this pattern,

Figure 4. A trajectory of a flight that was intends to land at runway 35, but
performs a go-around and lands at runway 27R

we compare the aircraft heading when the altitude increase is
initiated, with the aircraft heading at the final landing. If those
two headings are different, then a go-around with runway
change is identified. Unfortunately, this method is not able to
determine flights that change the landing runway to an adja-
cent runway having the same heading. Thus a supplementary
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process is added by checking the number of turning points
after initiating the altitude increase as illustrated in figure 4. In
fact, after initiating the go-around (point labeled by the green
star in figure 4), the RDP algorithm proceeds to count the
number of turning points of the remaining trajectory, which
are the red points highlighted in figure 4. If the number of
turning points exceeds two, than a go-around with runway
change is detected. The number tow of turning point is chosen
in order to avoid miss-classification with runway exit turn.

D. Feature engineering
Table I summarises the set of features that are included

in our model. It can be divided into two groups. The first
group includes the primary features that are directly extracted
from the data-sets. The second group, which is highlighted
in green in table I, contains features that are constructed
and deduced from the primary features in order to help the
prediction model in the training process. The description of
the considered features is presented in table I. However, some
features require further explanation, specifically the angle
with the runway center-line, aircraft kinetic energy, and the
sky cover index. Details on these three features is provided
in the following paragraphs.

The flight angle with the runway center-line defines the
angle between the aircraft heading and the runway heading
at the horizontal plane, as shown in figure 5.

Figure 5. Top view of flight angle with the runway center-line.

The traditional method to compute the aircraft kinetic
energy requires the knowledge of the aircraft mass which
is not provided in our data. Therefore, we use the Specific
Total Energy (STE) metric which defines the total mechanical
energy per unit weight of the aircraft [16]. STE is defined by
the following equation:

STE = h +
V 2

2g
(1)

Where h is the altitude of the aircraft, V is the ground speed
of the aircraft, and g is the gravitational acceleration.

The METAR data provides separate information about the
sky cover and its altitude. Thus, the system has to learn
that the combination of these two features defines the sky
condition at the runway proximity. For instance, an overcast
condition at 10, 000 feet should be less critical than an
overcast condition at 200 feet. For this reason we include
a new feature named “sky cover index (SCI)” to help the
system better learn the overall sky condition. SCI is defined
as follows :

SCI =
SC

altitude
(2)

Where SC is a numerical value of 0, 1, 2, 3, or 4 if the
sky cover is clear, few, scatter, broken, or overcast, respec-
tively, and altitude is the sky cover altitude. Thus, when SCI
increases, the probability of a successful landing decreases.

E. Prediction model
In this work, the eXtreme Gradient Boosting (XGBoost)

classifier is adopted for the prediction model. XGBoost is
one of the most popular algorithms in the data science
community, and is able to handle large imbalanced data-sets
[17]. It is based on the Gradient Tree Boosting technique,
and is able to handle large-scale machine learning tasks [18].
The XGBoost algorithm has shown success in dealing with
several classification and regression problems in numerous
applications [19], [20]. The XGBoost algorithm uses boosting
techniques to create and combine a large number of trees. The
algorithm creates new models that predict previous models’
residuals (errors) and learns from them to converge to the final
prediction. It employs a gradient descent algorithm in order
to minimize the loss when adding new models. XGBoost has
recently proven its effectiveness in handling binary label-
imbalanced classification tasks by implementing weighted
cross-entropy on the boosting machine [17]. Weighted cross-
entropy loss is a cost-sensitive method for learning imbal-
anced data [21]. It consists of increasing the penalization of
miss-classifying the minority classes.

The model is implemented using the XGBoost python
package. Tuning the model parameters has a significant
impact on the overall model’s performance. In order to avoid
over-fitting and configure the best model parameters, we
use the grid search capability from the scikit-learn python
machine learning library. As our problem is a classification
problem, gbtree is used as the booster type. It consists
of creating a set of trees sequentially to reduce the miss-
classification rate in each iteration. The grid search cross
validation is implemented to tune the algorithm parameters.

IV. RESULTS & DISCUSSIONS
A. Go-around labeling results

The developed algorithm for go-around labeling is able
to correctly identify 731 go-arounds, among which 93 flight
change their runway following a go-around. This shows that
the runway change is relatively frequent when performing a
go-around, as it represents around 13% of the total number
of go-arounds. Results on go-around labeling showed that
most of the go-arounds are initiated within 2 NM from the
runway threshold (206 go-arounds). In this paper we focus
on the flight final approach phase, namely when the aircraft
is aligned with the runway. Therefore, only the go-arounds
that are initiated within 10 NM from the runway threshold
are considered, which results in a count of 662.

B. Data preparation for the prediction model
Table II shows the number of flights and go-arounds

recorded for each runway. Flights assigned to runway
‘09R/09L/08’ or ‘27L/27R/26’ refer to the flights that have
inaccurate trajectory tracking data points, but include the air-
craft heading. Thus, we only know from which direction the
aircraft is approaching the runway. For instance, flights that
are approaching from the west are assigned to ‘09R/09L/08’,
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TABLE II. NUMBER OF FLIGHTS AND GO-AROUND FOR EACH RUNWAY.

Runway 09L 09R 27L 27R 08 26 17 35 09R/09L/08 27L/27R/26 Not assigned Total
Number of arrivals 1550 23274 9955 65834 40 708 2927 16249 1158 491 82 132,118

Number of go-around 12 124 62 281 1 20 15 139 5 0 3 662

flights that are approaching from the east are assigned to
‘27L/27R/26’, flights that are approaching from the north are
assigned to runway 17, and flights that are approaching from
the south are assigned to runway 35. For some flights, even
the heading is not provided. Those cases are not assigned to
any runway, but are still considered in the prediction model.
The runway information represents one of the features in
the prediction model feature vector. Therefore, the proposed
model is generic and is not dedicated to a single runway.

The number of go-around accounts for only 0.5% of the
total number of arrivals. This is a highly imbalanced data
set, and requires techniques to help the prediction model
learn from the minority class. Down-sampling the majority
class is one of the most popular techniques adopted for this
type of data imbalance problem. Down-sampling consists of

Figure 6. An example of the proposed down-sampling technique.
randomly removing instances from the majority class. As
mentioned in section II-D, these down-sampling methods can
fail to address the current problem as previous flight ma-
noeuvres might contribute to a subsequent go-around event.
Therefore, in this work, we propose a novel method of down-
sampling. It consists of considering flights that precede or
follow a go-around instance, as shown in figure 6. Let us
consider a go-around flight f that reaches a radius R NM
from the runway threshold. First, a ∆t time interval is fixed.
Then, flights that arrive within ∆t time from flight f are
retained in the data, and are not eligible for down-sampling
removal. After this, random flight instances are also included
to avoid over-fitting and to reach a percentage of go-around
ranging from 5% to 15%. After experimentation, the value of
∆t is set to 10 minutes.

Experiments on both the full and down-sampled data-sets
are performed. The number of data instances in each data-set
is presented in table III.

TABLE III. DATA DEMOGRAPHY

Radius Full data-set Down-sampled data-set
Nb. arrivals Nb. go-around Nb. arrivals Nb. go-around

10 NM 132,118 662 5663 662
8 NM 132,073 617 5516 617
6 NM 131,965 509 5344 509
4 NM 131,825 369 4825 369
2 NM 131,662 206 3427 206

The data is split into 80% training data and 20% test
data for all prediction models at different radii. Furthermore,

during the training three-fold cross-validation is performed to
determine the optimal parameters for each prediction model.
Five metrics are considered to evaluate our model: F1-score,
the AUC (Area Under The Curve)-ROC (Receiver Operating
Characteristics) curve, Precision, Recall, and accuracy.

C. Go-around prediction results
The prediction performance results of the down-sampling

model are presented in figure 7. The algorithm performance

Figure 7. Histogram of the down-sampling performance results for different
radii. Results show a significant improvement of the model performance
while approaching the runway threshold.

increases as the aircraft approaches the landing. Thus, the
best results are recorded at 2 NM, where 56% of the total
number of go-arounds are detected with only a 10% rate
of false positive alarm. Even though only half of the go-
around are detected, 90% of the system go-around alarms
are actual go-arounds. In comparison with other work, [9]
proposes a down-sampled model that detects 74% of the
go-around where only 32% of the predicted go-around are
actual go-around. This means in [9] the controller will expect
a false go-around in almost 70% of the system go-around
alerts. Similarly, in [11], half of the go-around are detected
with only 2% of the predicted go-arounds being correct. We
believe this will increase the controller workload, as well as
potentially perturb his/her attention unnecessarily. Therefore,
having higher accuracy in terms of correct alerts results in
higher trust from the controllers to use the system.

The prediction model performance in full data-set is pre-
sented in figure 8. Results show that the system performance
with the full data-set decreases slightly compared to the model
with down-sampling data. However, the system characteristics
remain similar. The performance of the model increases as
the distance to the runway decreases. Also, the system places
higher priority to predicting a correct go-around (high preci-
sion) than to detecting a go-around (high recall). We perform
a comparison with the hidden Markov method proposed in [9]
for the full data-set model at 2 NM. Our model detects 33% of
go-around where 75% of the detected go-around are actually
correct. However, in [9] 41% of the go-around are detected
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Figure 8. Histogram of the full data performance results in different radii.
The results shows that the model performance increases while approaching
the runway.

but only 15.5% of the detected go-arounds are actual go-
arounds. Thus, we achieve a reduction in the false positive
alerts by almost 60% while the detection rate decreases by
approximately 8%. This means that an ATC can rely on the
go-around prediction as being accurate the vast majority of
the time, increasing trust in the system.

To sum up, the achieved results are more accurate when
predicting a go-around compared to state-of-the-art mod-
els [7], [9], [11]. Furthermore, our findings confirm that pre-
dicting go-around occurrence is a very challenging problem.
In fact, the number of detected go-around before 4 NM
is very low (results in 7 and 8). The failure in accurately
predicting a go-around can be justified through three main
factors. First, the most important factor is that go-around
events are subjective to the pilot decisions. Thus, the decision
to go-around may be due to several factors that are hard to
or even impossible be measured and/or collected, such as the
pilot experience, personality, or his/her level of fatigue, etc.
The second factor is the visibility. Even though this data is
provided in METAR, it is not accurate and it does not provide
the actual visibility level at the considered decision height.
Finally, as we are only considering ADS-B data, our model
lacks the airport surface movement data which we believe
can affect a go-around decision. All these factors together
mean that go-around and non go-around instances are closely
aligned and similar.

V. CONCLUSION
The current work proposes a method to predict flight go-

around events at the final approach phase for the purpose of
increasing the situational awareness of tower controllers to
safely perform their control tasks. It includes an innovative
go-around trajectory labeling technique to detect go-around
flights from historical data. Furthermore, it presents a data-
driven model based on a binary classification prediction
methods in order to predict flight go-around occurrence at
different radii away from the runway threshold. In order to
evaluate the performance of proposed method, computational
experiments are conducted using ten months’ of air traffic
data for flights arriving at Philadelphia International Airport
(PHL). Two types of experiments are conducted; the first
includes down-sampling techniques and the second includes
the full data set. The best prediction results are found at 2
NM away from the runway threshold. For the down-sampling

data, the model is able to predict 56% of the go-arounds with
only a 10% false positive alert rate, while for the full data
set the model is able to detect 33% of the go-arounds with a
25% false alert rate. Our model outperforms state-of-the-art
methods in terms of decreasing the false positive alerts in the
system by 60%.

In future work we plan to address the go-around prediction
problem by predicting the safety level of an approach profile.
This will reduce the impact of the pilot subjectivity on the
prediction, as well as alleviate the data imbalance problem.
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