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Abstract—This paper describes one approach to use convo-
lutional neural networks to detect wake vortices generated by
aircraft based on scanning Doppler LIDAR measurements.
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I. A PROBLEM OF WAKE VORTEX DETECTION

Wake vortices generated by heavy aircraft may present a
significant hazard for other aircraft, especially of a lighter
category ( [1]). To counter this hazard, aircraft operations
in a densely occupied airspace require application of some
additional separation distance, leading to reduced capacity.
Although there is a number of modelling methods ( [9],
[10]) to predict vortex behaviour, strength and decay, direct
detection bears a significant challenge.

Scanning Doppler LIDARs ( [4], [7], [8]) are the one means
to directly measure these wake vortices. A neural network
approach to LIDAR-based real-time detection of wake vortex
presence on a glideslope is a task of this study. Some current
research activities regarding neural networks applications for
wake detection are presented in [14] and [15].

II. DATA ACQUISITION WITH LIDAR

Neural network require a significant amount of data to
perform training and validation. We use a comprehensive data
set acquired by several LIDARs deployed in major airports.
These airports exercise a representative traffic mix with more
than 50% heavy and super-heavy aircraft.

Generally a LIDAR is installed in an immediate vicinity of
a runway, with a nominal lateral offset of 300 meters off a
center line and a nominal downwind offset of 900 meters off
a threshold.

Scanning geometry (Figure 1) takes into account a known
manner of vortex behaviour. An induced turbulence is gen-
erated at aircraft’s altitude, evolves into a distinct vortex
structure several seconds later and then decays, gradually
moving towards the ground.

LIDAR scans in a vertical plan orthogonal to an extended
runway center line (Figure 2). Scanning elevation angles are
generally set from zero (horizontal) (further designated as
ϕmin) to 30 degrees high (ϕmax). This configuration ensures

Figure 1. Scanning Geometry Overview

capturing a glide slope intersection point, as well as the most
of vortex presence area.

Figure 2. Scanning Plane

LIDAR digital output, named the “raw data”, can be repre-
sented as a set of scans. Each scan corresponds to a single pass
of LIDAR scanner’s reciprocating motion from the lowest ele-
vation angle to the highest, or vice versa. At the each elevation
angle (i.e along a scanning ray), LIDAR senses a projection of
a wind speed (v) to a scan line at a set of distances. Scanning
distances are determined by LIDAR capabilities and current
geometry, with minimal distance (rmin) generally set to 100
meters, and maximum (rmax) set to 600 meters.

Thus, a LIDAR scan can be represented in discrete polar
coordinates as follows:

S = {v(ϕi, rj)},
ϕmin ≤ ϕi ≤ ϕmax,

rmin ≤ rj ≤ rmax,

i = 1..K, j = 1..M.

(1)



Numbers of measurements in a single scan N = KM
is determined by scan’s angular (0.5◦) and range (3 m)
resolution, and timing constrains. A typical scan contains
10000 measurement points.

III. VORTEX DETECTION ALGORITHMS

In this study we want to estimate a number of vortices
present and their location using a single LIDAR scan. As a
vortex is a dynamic 3D object, a LIDAR can capture only
a limited amount of vortex information. As one scan is fast
enough, we assume that a single scan represents a single
section of a vortex volume by a scanning plane. A nature
of a vortex is such that the major part of a wind speed vector
projects to the scan plane.

Figure 3. Wind Speed Field for Vortex Sections

Existing ad hoc algorithms ( [2], [3]) are based on direct
analysis of vi,j value behaviour. Specifically, high gradient
values of v, together with change of sign (i.e. direction) along
the adjacent ray, constitute the presents of a vortex. This
approach has both advantages and disadvantages.

As a main advantage, these algorithms can be used to
derive quantitative characteristics of a vortex: coordinates
and circulation strength. However, these methods work under
two assumptions: firstly, a vortex has a delineated circular
structure, and, secondly, radial wind speed distribution has a
particular shape.

The last assumption is not precisely correct near a ground
plane, when its interference with a vortex creates secondary
vortex structures, hence overall vortex geometry deviates from
a circular shape.

To address this problem, we follow an alternative approach
which is less sensitive to a priori vortex structure.

IV. LIDAR SCANS AS IMAGES

For a human, the primary tool to assess a vortex presence
on a LIDAR scan is to examine scan’s 2D color rendering —
a conventional digital image. As modern convolutional neural
networks (CNN) reach human ability in image recognition, in
our study we try to leverage these capabilities for wake vortex
detection. As with all neural networks, there are several basic
steps required:

• Acquire a data set, split into training, test and validation
subsets.

• Label the training set and the test set.
• Train the network.
• Run inference over a validation set and assess the perfor-

mance.

A. Scan Conversion

First, we need to define a deterministic way to transform
a LIDAR scan to an image. As a reference grid we choose a
rectangular area in a scan plane. CNNs require a fixed image
resolution.

We assume the following scan parameters and a linear
resolution of 1 meter:

ϕmin = 0◦, ϕmax = 30◦,

rmin = 100, rmax = 600,

δ = 1.

(2)

We choose our linear resolution to be several times higher
than a nominal physical resolution. Hence, horizontal resolu-
tion in pixels is given by:

W = (rmax − rmin) /δ = 500.

Minimal vertical resolution calculates as

H = (rmax − rmin) sin(ϕmax) = 250.

So we use the following cartesian grid:

(xp, yq), p = 1..W, q = 1..H.

Next, we extrapolate a single LIDAR-measured value vi,j
to an elementary scan element, a “cell”. A cell is formed
by adjacent rays and consequent measurement distances as
depicted on Figure 4.

Figure 4. Elementary Image Cell

The cell is defined by four grid points (xi,jl , yi,jl ), l = 1..4.
Assuming that ϕj is a current scan ray elevation, di is a current
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measurement distance, ∆ϕ is an angle between the rays, we
derive these points:

xi,j1 = di cosϕj −∆ϕ,

xi,j2 = di cosϕj + ∆ϕ,

xi,j3 = di+1 cosϕj + ∆ϕ,

xi,j4 = di+1 cosϕj −∆ϕ,

yi,j1 = xi,j1 tanϕj −∆ϕ,

yi,j2 = xi,j2 tanϕj + ∆ϕ,

yi,j3 = xi,j3 tanϕj + ∆ϕ,

yi,j4 = xi,j4 tanϕj −∆ϕ.

(3)

Then scanning plane coordinates are transformed to the
image coordinates as following:

Hmin = rmin cos(ϕmax),

Hmax = rmax,

Vmin = rmin sin(ϕmin),

Vmax = rmax sin(ϕmax),

p =
W (x−Hmin)

Hmax −Hmin
,

q =
H(y − Vmin)

Vmax − Vmin
.

(4)

Futher, we denote this transform as (p, q) = T (x, y).
All grid points in the cell are set to the value corresponding

to the current measurement vi,j . We need to convert the
measurement, a single real value, to a color triplet. The
most common RGB color model is fit this purpose. General
approach would be to use a standard graphics library. However,
this process may or may not be deterministic, and not always
well-documented. To address this problem, we apply four
steps:

• Remove influence of the ambient wind by substructing
an average wind speed value V .

• Truncate wind speed values by a reasonable maximum,
for which we choose vmax = 30m/s.

• Apply a linear transform of a wind speed range to a
visual light wavelength range in nanometers (λmin =
380, λmax = 750), which is naturally converted into
a color.

• Apply a transform based on a formula presented in [12]:
(R,G,B) = C(λ).

To remove the ambient wind and truncate, we apply:

V =
1

N

K∑
i=1

M∑
i=1

vi,j ,

v = max
{ v
V
, vmax

}
.

(5)

Then the range is transformed as:

v̂i,j =
vi,j + vmax

2vmax
,

λi,j = λmin + v̂i,j (λmax − λmin) .
(6)

The final color applied to a cell corresponding to vi,j equals

(Ri,j , Gi,j , Bi,j) = C(λi,j).

Applying there values to all pixels within a polygon
T (xi,jl , yi,jl ), l = 1..4 for all cells i = 1..K, j = 1..M ,
we acquire a final image, denoted as a tensor

I =

 (R1,1, G1,1, B1,1) . . . (R1,H , G1,H , B1,H)
. . . . . . . . .

(RW,1, GW,1, BW,1) . . . (RW,H , GW,H , BW,H)

 ,
(7)

where p = 1..W, q = 1..H .
An example is given by Figure 5.

Figure 5. An example of LIDAR Scan Rendering

V. TRAINING AND TEST IMAGES GENERATION

Our initial data set contains LIDAR scan with a variety
of noise, background disturbance and scanning actifacts, and
the most common measurements do not contain any vortices
at all. On the other hand, to train a neural net, we require
an extensive set of images with coordinates of a vortex are
labeled appropriately. As there exist a significant number of
vortex shapes and sizes, a manual selection was disregarded
in the scope of this paper as too time-consuming. Also, in
an absence of a robust ad hoc detection algorithm, automated
labelling is also problematic.

To address these concerns, we apply the following proce-
dures:

• LIDAR measurements modelling.
• Ambient conditions measurements labelling.
• Image blending.

A. Modelling

To avoid extensive manual vortex detection and labelling,
we use a model described in [5], [6] to generate a comprehen-
sive set of modelled LIDAR measurements for certain vortex
parameters.

Modelling is two-phased. First, we model the vortex as a
3D wind speed field, and then a LIDAR measurement model
used to convert this field into a set of measurements which
simulate a real scan defined by (1).

In order in acquire a representative vortex collection, each
of the vortex parameters is varied in a predefined range by
a predefined step value or chosen from a list, yielding a set
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of parameter’s values. Combined, these sets form a cartesian
product, and for each element a LIDAR scan is modelled.

The following parameters are used:
• Aircraft type. Values: Boeing B767, B777, B787, Airbus

A380, A350, A340, A330, A319, A320. Number of
elements C1 = 9.

• Scan delay from scanning plane intersection time. Values:
10, 12, 15 seconds. C2 = 3.

• Vortex generation height. Values: 75 meters, 60 meters.
C3 = 2.

• Ambient wind speed. Minimum −2m/s. Maximum
4m/s. C4 = 7.

• Wind direction. Minimum 0◦. Maximum 0.3◦. C5 = 8.
Thus, we generate Cg =

∏5
i=1 Ci = 3024 different vortex

models. Each model is rendered as an image using the same
procedure as described in Section IV-A

Using a notation defined by (7), this image set is defined
as Igen,g, g = 1..Cg .

An example generated vortex image is presented on Fig-
ure 6.

Figure 6. Modelled LIDAR Scan Rendering

In addition to the scan data, our model yields two pairs of
vortex coordinates (X1, Y1), (X2, Y2) in a scan plane, and
vortex radii R1, R2.

B. Ambient Conditions Scans

As one can see from the above example, although the model
can simulate a vortex itself, a generated image lacks adequate
representation of ambient wind conditions. Instead of using a
corresponding model, this study adopts a different approach.
We select a set of LIDAR scans which do not contain any
vortices. These scans were taken in diverse conditions, reflect-
ing various wind environments. This selection is performed
manually with a help of a labelling tool. Somewhat arbitrarily
we choose Ca = 50 different scans.

An example of a selected scan Iamb,g, g = 1..Ca, is
presented on Figure 7.

C. Image Blending

Finally, we generate a set of images suitable to be used as
neural network inputs.

First, a basic background image Iback is generated as
follows:

Ibackp,q = C(0), ∀p = 1..W, ∀q = 1..H

Figure 7. Ambient Conditions LIDAR Scan Rendering

.
Second, for every generated image Igen,g, g = 1..Cg we

randomly select an ambient condition image Iamb,a∗
, a∗ ∈

{1, . . . , Ca} and generate the final images using the following
blending procedure.

Third, a blending mask is derived from the set of vortex
coordinates, in such a way so the target image contains both
generated vortex and ambient conditions. The weight of a
generated information is higher when a distance is lower.

In image grid coordinates, vortex coordinates on g-th gen-
erated image calculate as:

(P g
1 , Q

g
1) = T (Xg

1 , Y
g
1 ) ,

(P g
2 , Q

g
2) = T (Xg

2 , Y
g
2 ) .

(8)

Assuming DM is a Manhattan distance function

DM (p, q, p0, q0) = |p− p0|+ |q − q0|,

a mask calculates as a sum of the first vortex mask

Mg,1
p,q = max {0, 1− 0.01DM (p, q, P g

1 , Q
g
1)},

and the second vortex mask

Mg,2
p,q = max {0, 1− 0.01DM (p, q, P g

2 , Q
g
2)},

so the final mask equals

Mg =Mg,1 +Mg,2. (9)

An example of a blending mask is shown on Figure 8.

Figure 8. Blending Mask

As the last step of input data preparation, for g = 1..Cg we
generate a set of training input images as

Iinput,g =MIgen,g + (1−M)Iamb,a∗
+ Iback.
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Figure 9. Blended Scan Rendering

An example of an input image is shown on Figure 9.
Additionally, each input image is augmented with labelling

data in PASCAL VOC XML format. Labelling data contain
vortex positions in image grid coordinates. A simple rectan-
gular label is used for each of two vortices. To contruct these
labels, we use vortex radii R1,2 yielded by the modelling
procedure. Two label rectangles

(
p1,2min, q

1,2
min, p

1,2
max, q

1,2
max

)
are

defined by:

X1,2
min = X1,2 −R1,2,

X1,2
max = X1,2 +R1,2,

Y 1,2
min = Y 1,2 −R1,2,

Y 1,2
max = Y 1,2 +R1,2,(

p1,2min, q
1,2
min

)
= T

(
X1,2

min, Y
1,2
min

)
,(

p1,2max, q
1,2
max

)
= T

(
X1,2

max, Y
1,2
max

)
.

(10)

An example of label rectangles is shown on Figure 10.

Figure 10. Rectangular Labels for the Vortices

VI. NEURAL-NETWORK BASED DETECTION MODELS

There are multiple image recognition architectures [11]
readily available to train on compatible data set. For this study,
we use a well-known Faster R-CNN method and Inception V2
architecture, pre-trained on the COCO data set.

Neural network training use a procedure described in [13]:
• Tensorflow library is configured to use GPU acceleration.
• Blended images data and labelling data are converted to

TensorFlow data records.

• Training parameters are set:
– Number if classes: 1 (’Vortex’);
– Number of steps: 200000;
– Training data set: 80% of samples (0.8Cg);
– Testing data set: 20% of samples.

• Training sequence is launched.
• A target trained model is exported.

A. Detection Results

To validate our network, we apply an inference procedure
based on the exported model to real LIDAR scans. Target
estimated probability cutoff is set (heuristically) to 86%. Any
scan feature with ’vortex’ class probability higher than this
cutoff if considered a vortex. There is a limited number of
false alerts. However, these falsely detected objects may also
be physically interpreted. Most of the time, they represent
secondary vortices generated by ambient wind on aerodrome
structures. The model outputs an estimate of detected vortex
bounding box coordinates. Then we overlay these coordinates
on a scan render to visualized detection results.

We present several detection examples is presented on the
following figures:

• Detection of a single vortex on a scan (Figure 11)
• Detection of a pair of vortices generated by the same

aircraft (Figure 12).
• Detection of a pair of vortices generated by two subse-

quent aircraft (Figure 13)
• False detection on near-surface vortex (Figure 14)

Figure 11. A Vortex Detected on a Scan

Figure 12. Two Vortices Detected on a Scan
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Figure 13. Two Vortices from Different Aircraft

Figure 14. False Detection

VII. ANTICIPATED FUTURE RESEARCH

This study uses a straighforward approach to detect vortices
based to translation of a scan to an image. There are several
ways to develop this approach further:

• Real-time Capability Analysis: preliminary assessment
shows that this approach can be used in real-time, since a
single scan takes about 12 seconds, and subsequent pro-
cessing time is neglible given proper hardware. However,
realtime applications also raise non-technical (e.g. reg-
ulatory and quality assurance) issues that require futher
research.

• More Wake Models: there are multiple emerging object
detection models and neural network architectures. A
study is required to assess whether these are more ef-
ficient to detect vortices.

• Polar Coordinates Detection: a LIDAR scan is naturally
described in polar coordinates. However, a conventional
CNN uses cartesian coordinates. There are models which
address this. One can investigate whether these are appli-
cable to vortex detection.

• Dynamic Approach: A vortex is a dynamic 4D object. In
this study, we analyse a vortex section in isolation based
on a single LIDAR scan. Considering several adjacent
sections in a single model may enhance detection quality.
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