
Variable Taxi-Out Time Prediction
Using Graph Neural Networks

Yixiang Lim†, Fengji Tan†‡, Nimrod Lilith†, Sameer Alam†
† Saab-NTU Joint Lab, Nanyang Technological University, Singapore

‡ Saab Singapore
{yixiang.lim, fengji.tan, nimrod.lilith, sameeralam}@ntu.edu.sg

Abstract—Airport Collaborative Decision Making (ACDM) is
an important initiative that aims at more efficient and optimised
use of airport resources. Variable taxi time prediction is one
of the key elements in ACDM, supporting the tactical planning
needed to ensure smooth traffic flow and optimal use of taxiway
resources. This paper presents a mesoscopic data-driven model
for the prediction of variable taxi-out times together with
the associated data processing stages. To support operational
implementation, the model utilises features that are readily
available as part of the pre-departure tactical planning phase –
namely, information on the intended taxi route and milestone time
estimates. By using a Graph Neural Network (GNN) framework,
each trajectory can be represented as a sub-graph of the airport
taxi network, and GNN convolution operations be performed
on this subgraph to extract meaningful features. Both impeded
and unimpeded taxi time predictions from the GNN model
are compared against standard methodologies by the Federal
Aviation Authority (FAA) and EUROCONTROL, as well as
against predictions made by Gradient Boosted Machines (GBM),
a popular tree-based machine learning technique. Results show
that both GNN and GBM models outperform standard FAA and
EUROCONTROL methods (with RMSE and MAE of the former
group lower by 40% to 60% relative to the latter), and the novel
GNN model slightly outperforms the GBM model by around 2
seconds, or a 2% to 4% improvement in model performance.

Keywords—Air Traffic Control; Airport Collaborative Decision
Making; A-SMGCS data; taxi time prediction; Graph Neural
Networks

I. INTRODUCTION

An increasing digitalisation of Air Traffic Control (ATC)
towers provides opportunities for stakeholders to work to-
gether to improve the safety, efficiency, resilience and sus-
tainability of airport airside operations. A key initiative that
is being pursued over the last decade is Airport Collaborative
Decision Making (ACDM). The key concept behind ACDM is
to enable airport users to work together to make better oper-
ational decisions through sharing a common picture. ACDM
can lead to more optimised use of resources within the air
transport network, reduced delays, waiting or buffer times,
along with greater predictability and responsiveness to adverse
conditions [1]–[3].

The ACDM elements set out in EUROCONTROL’s ACDM
Implementation Manual [4] describe a number of fundamental
building blocks, starting with information sharing, then fol-
lowed by monitoring and prediction of aircraft milestone times
as well as accurate variable taxi time prediction. The work
presented in this paper focuses on this latter aspect, as accurate

taxi time predictions can be particularly important for effective
pre-departure sequencing, translating to optimised runway us-
age particularly for high-capacity runway configurations such
as mixed-mode operations. Tactical decision support tools pro-
viding such functionalities can support Air Traffic Controllers
(ATCOs) in ensuring efficient use of airport resources, while
maintaining system-wide transparency across different airport
stakeholders. Additionally, accurate taxi time predictions can
be beneficial for the optimisation of downstream air traffic
flow and capacity in Network Operations through provision
of accurate Calculated Take Off Times.

Currently, at most airports, a default taxi time is assumed
for all movements, otherwise a set of taxi times are associated
with particular runway configurations [4]. While this might be
sufficient at small airports, taxi times can vary significantly at
medium and large airports where the taxiway layout, opera-
tional mode, aircraft type, taxi route, as well as traffic and
weather conditions, all can have a significant impact on actual
taxiing times. In such cases, the calculation of variable taxi
times can provide more accurate taxiing time estimates. While
the desired accuracy of these estimates varies over different
planning horizons, as described in Table I, the requirements
of the tactical planning phase are the most stringent, with a
desired accuracy of within 2 minutes.

TABLE I. DESIRED ACCURACY OF TAXI TIME ESTIMATES OVER DIFFER-
ENT PLANNING PHASES, BASED ON [4].

Planning phase Prediction horizon Desired accuracy
Strategic 2 hrs to 3 hrs ±7 mins
Pre-tactical 30 mins to 2 hrs ±5 mins
Tactical Up to 30 mins ±2 mins

II. LITERATURE REVIEW

A. Taxi Time Modelling

Taxi time models can be broadly grouped into microscopic,
mesoscopic, or macroscopic models, according to the level
of detail required of the model. Microscopic models sim-
ulate the taxiing dynamics of single aircraft, and can also
account for complex interactions with other taxiing aircraft
[5]. Mesoscopic models aggregate the taxi data of individual
aircraft movements into higher-level flow metrics, usually
over as attributes of individual taxiways and runways within
graph-based, node-link representation of the airport [6]. In



macroscopic models, data is further aggregated into high-level
flow or congestion metrics capturing taxiing characteristics
over large parts of the airport (e.g., stand-runway pairs, as
opposed to individual taxiway links) [7]–[9]. When deciding
between these different models, one of the main considerations
tends to be the trade-off between model fidelity and simplicity.

As microscopic models simulate the taxiing of individual
aircraft, they can yield highly accurate and detailed outputs
(e.g., taxi speed profile, precise holding times and locations,
holding reason, etc.), however, a fairly complex model is
required to provide such a high level of detail. Event-based
simulations such as SOSS [10], SIMMOD [11] or TAAM
[12] utilise detailed aircraft and airport models, along with
handcrafted rules for surface movement (e.g., taxiing, holding
or queueing), making it challenging to adapt such models
to new airports or operating conditions. Additionally, the
inherently dynamic nature of microscopic models introduces
complex interdependencies between the simulated agents and
their environment, which tends to incur a relatively higher
computational cost, and also makes it more difficult to translate
into tactical decision support tools for ATCOs.

Macroscopic models adopt a different approach by abstract-
ing away from simulated movements of individual aircraft,
instead modelling the aggregated surface flow characteristics
at the airport-level. These can be further divided into empir-
ical and analytical models. Empirical models adopt a data-
driven approach for modelling taxi times based on statis-
tical regression [13], as well as machine-learning methods
[7], [9]. Analytical models include additional processes for
capturing specific flow characteristics — queueing theory-
based models, most prominently, have been used to model
congestion dynamics at runway, crossing or ramp locations [8].
Owing to their lower complexity, macroscopic models have
simpler data processing requirements, are generalizable across
a wider range of operating environments, and can also be more
easily integrated into decision support tools. Historically, the
macroscopic approach is considered to be the most established,
evident from methodologies for calculating taxi-out times,
developed separately by FAA’s Aviation Policy and Planning
Office (APO) [14] and EUROCONTROL’s Performance Re-
view Unit (PRU) [15]. However, we note that macroscopic
models reflect flow metrics at the airport level, and can suffer
from a lack of detail when modelling local flow conditions,
and therefore will tend to under-perform when predicting the
taxi times of larger and more complex airports.

Mesoscopic models represent a middle-ground between
the microscopic and macroscopic approaches. While there is
also an aggregation of individual aircraft movement data, the
level of granularity in the data is finer compared to that of
macroscopic models – at node-link level as compared to airport
level. As such, mesoscopic models present an opportunity to
exploit the strengths of both microscopic and macroscopic
models. Compared to microscopic models, the aggregation
of aircraft data allows for a lower computational complexity
and greater ease of integration into decision support tools,
while the higher model fidelity relative to macroscopic models

allows for potentially greater detail and accuracy in the model
prediction.

B. Graph Neural Networks

In recent years, Graph Neural Networks (GNNs) have been
gaining popularity as a means of performing deep learning
on graph-structured data. Compared to classical deep learning
approaches, which typically operate on Euclidean data, GNNs
allow for machine learning operations to be performed on en-
tities and their relations, modelled by explicit, non-Euclidean
data structures – specifically graphs – which can represent
entities, their properties, and the relationships between other
entities. GNNs have found applications in several domains,
including social networks [16], physical [17], biological [18],
[19] and multi-agent systems [20], as well as in traffic fore-
casting [21].

A graph is defined as G = {V ,E} with V denoting
the set of nodes in the graph and E denoting the set of
edges connecting the nodes. Furthermore, G may contain
a combination of node attributes vi ∈ V , edge attributes
eij ∈ E, and global attributes u, and can be either directed
or undirected. If G is directed, eij represents the one-way
relationship between source node vi and target node vj ;
otherwise, if G is undirected, a two-way relationship exists
such that eij = eji. GNN tasks can be decomposed into node,
edge as well as graph-level tasks – where inferences are made
about individual node, edge or the entire graph’s properties.
Common operations performed by a GNN layer include graph
convolutions and graph pooling. Graph convolutions follow
a similar principle as the convolution operations used by
Convolutional Neural Networks (CNNs), extracting higher-
level features through the use of localised filters. In the
same manner, graphs are downsampled through graph pooling
operations in the same way that CNN pooling layers work to
reduce the dimensionality of its input feature maps.

1) Graph Convolution: Graph convolutions can be per-
formed on the graph’s nodes and/or edges. Convolution layers
are typically made up of a combination of message-passing
and update steps. In the message-passing step, messages are
created at nodes and/or edges based on the attributes of
other nodes/edges in its neighbourhood N through a message-
passing function M .

mt+1
i =M(vti , v

t
j , e

t
ij)∀j ∈ Ni

In the update step, the messages at each node/edge are
collected and then used to update the node’s/edge’s attributes
in the next layer with an update function U

vt+1
i = Uv(v

t
i ,m

t+1)

et+1
ij = Ue(e

t
ij ,m

t+1
i ,mt+1

j )

Most of the well-known graph convolution layers, such as
GCNConv [22], SAGEConv [23] and GATConv [24] were
designed to operate only on node attributes, and later ex-
tended to include graph attributes (e.g., EGAT [25]). The
Graph Transformer layer with edge features [26] applies the

2



transformer architecture to graph datasets, with edge and node
message functions mk,t+1

e and mk,t+1
v for k = 1 : H attention

heads:

mk,t+1
e =

(
Qkvti ·Kkvtj√

dk

)
· Eketij (1)

mk,t+1
v =

∑
j∈Ni

softmaxj(m
k,t
eij )V

kvtj (2)

where dk is a scaling parameter based on the output
dimension, and Qk, Kk, V k, Ek are the (learnable) query,
key, node value and edge value matrices. The edge and node
update steps Ue and Uv are further defined as:

Ue = Oe

Hn

k=1

(mk,t+1
e ) (3)

Uv = Ov

Hn

k=1

(mk,t+1
v ) (4)

where
f

denotes the concatenation operator performed over
all attention heads, and Oe, Ov are learnable matrices.

2) Graph Pooling: Graph pooling layers are used to coarsen
a graph by combining clusters of nodes or edges. For graph-
level inference tasks, global pooling operators are used to ag-
gregate a graph’s node and edge attributes into a single feature
vector xG. Examples of common global pooling operators
are mean, max or sum pooling, as well as sort pooling [27],
Set2Set [28] and global attention [29]. The global attention
pooling operator is given by:

xG =
N∑
i=1

softmax(φgate(vi))� φΘ(vi) (5)

where φgate is a neural network that computes attention
scores, and φΘ is a neural network that maps the node
attributes to the output dimension.

III. DATA PIPELINE

Figure 1 presents the various processing stages in the data
pipeline. The pipeline comprises three main stages, with higher
level data being extracted at each stage of processing.

In the first stage, depicted in gray, aircraft trajectories
are extracted from raw surveillance data, provided by Saab
Sensis’ Aerobahn surface management system, along with
other auxiliary data such as weather information. In the second
stage, trajectories are fused with the airport graph data by a
map-matching algorithm, then further enriched with movement
status and runway queue information. The enriched trajectories
are then used to obtain flow features, which are combined with
trajectory and auxiliary data in the third stage to generate the
dataset used to train the model.

The remainder of this section focuses on the second stage
of the data pipeline, highlighting key processes used to derive
key model features from trajectory data.

A. Graph Association

The four-dimensional track data obtained in the first stage
of the data pipeline is fused with a directed graph of the airport
surface network through a map-matching process. The map-
matching algorithm calculates the probability Pe of a track
datapoint being associated to edge e of the airport graph based
on a combined angular/distance-based approach:

Pe = Pd ∗ Pa ∗ Pθ.

The association probability Pe comprises three components:
Pd, denoting the association probability as a function of
shortest (perpendicular) distance between the datapoint and
edge e; Pa, denoting the association probability as a function
of the non-dimensional distance of the datapoint along edge e
(i.e., between 0 and 1 if lying along e); and Pθ, denoting the
association probability as a function of the angular alignment
between the datapoint and edge e.

B. Runway Queue Identification

Departing flights taxiing out to their allocated runway are
assigned to a departure queue prior to takeoff. During periods
of high demand, it may be desirable to maintain greater
pressure on departing runways – via longer queue lengths – in
order to maximize runway efficiency at the cost of additional
holding times for the queuing aircraft. To estimate the holding
times that aircraft spend in a departure queue, buffers zones
are defined around the entrances to each runway, illustrated
in Fig 2. Any holding occurring within these queue zones is
assumed to be due to runway queuing, as opposed to flow-
related congestion.

C. Holding Time Disaggregation

To gain a deeper understanding of the distribution and cause
of taxi holding, holding times are further broken down into the
separate components described in Table II.

TABLE II. HOLDING TIMES BREAKDOWN.

Hold type Description
Hrwy Holding in the departure queue zone (departures only).
Hcrossing Holding when the aircraft is crossing a runway.
Hflow Holding along taxiways, when the downstream flow is

greater than a set threhsold.
Htwy,gate Holding along taxiways, before the assigned gate be-

comes available (arrivals only).
Hramp,gate Holding on the apron, before the assigned gate becomes

available (arrivals only).
Htwy,res Any residual holding along taxiways that is not ac-

counted for by Hcrossing , Hflow or Htwy,gate.
Hramp,res Any residual holding on the apron that is not accounted

for by Hramp,gate.
Htwy The sum of Hcrossing , Hflow , Htwy,gate and

Htwy,res.
Hramp The sum of Hramp,gate and Hramp,res.
Htotal The sum of Hrwy , Htwy and Hramp.

While an in-depth discussion of Table II is outside the scope
of this paper, the breakdown presented above is primarily
used to identify outlier trajectories from the dataset, based on
inputs from subject matter experts. For example, the residual

3



Figure 1. Data pipeline, with key processing stages and data structures color-coded by processing stage; grey denotes trajectory extraction, blue denotes graph
fusion (light blue data boxes represent base data and dark blue data boxes represent derived data) and green denotes model training.

Figure 2. Designated queue zones of Atlanta airport, highlighted in magenta.
Runways are colored green. Queue zones are specific to the particular runway.

holding times Htwy,res and Hramp,res are good metrics for
identifying trajectories that hold for non flow-related reasons
(e.g., technical/passenger issues).

D. Flow Features

Traffic conditions are one of the key variables to be consid-
ered in the estimation of taxi times, since congested traffic is
known to adversely impact surface movement (e.g., affecting
taxiing speeds and leading to queuing delays). Although
congestion metrics – such as the number of taxiing in/out
aircraft and arrival/departure count – have been previously
used as features in macroscopic models, in our data exploration
we found that local flow conditions were more important than
global flow conditions, particularly for large airports where

congestion in a localised area might not translate to increased
taxi times for aircraft in other parts of the airport.

In our model, surface flow represents the spatio-temporal
movement of aircraft within the airport at a mesoscopic level,
aggregated from individual aircraft over different taxiway
links. From the fused trajectory data obtained from Section
III-A, the taxi intent – assumed here to be the taxi route
directly derived from the fusion process (i.e., not accounting
for tactical changes) – is extracted as a series of edges.
Trajectory start time estimates were obtained from movement
data, as it was found that the provided milestone timings were
too inaccurate. Moreover, while milestone times were given in
minute-level precision, the movement data was resampled to
second-level precision, therefore allowing for more accurate
estimates of the trajectory start time. For arrivals, the landing
time was taken to be the trajectory start time, while the start-
up time was used for departures. A ‘first-order’ estimate (i.e.,
not accounting for other interactions in the environment, for
example with other aircraft) of the route time was obtained
by assuming fixed taxiing speeds over different taxiway types
(e.g., apron, taxiway and runway). With the start time as a
reference point, the route timings were processed to obtain
occupancy intervals – the time intervals where each airport
taxiway would be occupied by aircraft. Furthermore, if some
statistical distribution is assumed (e.g., Gaussian), the prob-
ability of an aircraft occupying the edge at any particular
time interval can be derived from the occupancy interval
projections. In total, the following edge flow features can be
obtained:

• Aircraft count: the cumulative number of aircraft passing
through a particular taxiway within a specified time
window;

• Edge occupancy probability: the probability of a taxiway
being occupied within a specified time window, taken

4



to be the highest occupancy probability of all aircraft
(or equivalently, the occupancy probability of the nearest
aircraft); and

• Flow potential: the sum of the occupancy probabilities
of all aircraft within a specified time window. If only
one aircraft passes through the taxiway during the time
window, the flow potential is equal to the edge occupancy
probability.

E. Auxiliary Data

In addition to the trajectory data described in the sections
above, a number of other auxiliary features are also processed
within the data pipeline.

1) Weather: Inclement weather may have an adverse impact
on airport throughput – primarily reducing runway capacity,
but also impacting the taxiway efficiency, and might impose
additional operational constraints, such as the need for depart-
ing aircraft to perform de-icing during freezing conditions.
Following the methodology developed by [30], TAF and
METAR records were retrieved from the Aerobahn system and
processed to derive scores for each of the five weather classes
(visibility, wind, precipitation, freezing conditions, dangerous
phenomena). Minor modifications were made to the scoring
method to obtain a finer division of scores for some of the
weather classes. However, in our study, it was found that
weather did not play a significant role in taxi time prediction,
and was ultimately omitted from the input feature set.

2) Air Carrier: The air carrier information can be a relevant
feature when predicting aircraft ground movement, and is used
in the FAA APO methodology. Different carriers might have
different taxiing policies, with some possibly favoring expe-
diency while others preferring to taxi at lower, fuel-efficient
speeds. Additionally, at particular airports, air carriers might
have been assigned to a set of default apron stands. If their
assigned stands are fully occupied, arriving aircraft belonging
to the carrier might be forced to wait for occupying aircraft to
vacate before continuing their taxi into their assigned stand.

While the air carrier information could be fed directly as a
model input via one-hot encoding, this might not be feasible
at large airports, where the large number of operating airlines
translates to a corresponding large input dimensionality –
greater than 90 in our case study. For a more compact
feature representation, embeddings were generated from a set
of carrier characteristics (e.g., daily airport utilisation, fleet
mix, flight mix, apron mix, etc.), derived from airport traffic.
The specific details of the embedding methodology are not
discussed in this paper.

IV. GNN MODEL

We let the airport be defined as a directed graph G = {V,E}
with the set of nodes V and set of edges E. Then, each trajec-
tory can be represented by a subset of G, G′ = {V ′, E′,u}
with node attributes vi ∈ V ′, edge attributes ek ∈ E′,
and global attributes u. To support implementation in an
operational context, we limit the model inputs to features that
can be extracted from tactical planning data. In particular,

we include features that represent the structural layout of the
airport, route features derived from the trajectory intent, as
well as flow projections obtained from the first-order trajectory
time estimates. These features are listed in Table III, with
edge attributes decomposed into static (ek,s) and dynamic
ek,d attributes ek = [ek,s, ek,d], separately describing the
airport topology and taxiway flow conditions. Node attributes
describe the taxi intent and its relation to local taxiways.
Global attributes capture information that otherwise cannot be
included in the graph representation, such as carrier, runway,
queue position, the first-order time/distance estimates, etc.

TABLE III. MODEL ATTRIBUTES.

Input type Features

Node attrs

Est. route dist
Node anchor
Distance to anchor
Anchor weight

Edge attrs
(static)

Edge type
Edge length
Inverted edge length

Edge attrs
(dynamic)

Est. aircraft count
Est occupancy probability
Est flow potential

Global
attrs

Est rwy takeoffs and landings
Est rwy takeoffs and landings (normalised)
Queue position
Queue position (normalised)
Est route distance
Est unimpeded time
Rwy ID
Aircraft wakecat
Carrier embeddings

A. Dataset

The dataset comprises taxi movements at Atlanta airport
over two months (December 2019 and January 2020), with
approximately 136,000 movements (arrivals and departures
combined) over 62 days. As there are certain factors in
taxi time prediction that are specific to arrival and departure
movements, separate taxi-out and taxi-in models can allow for
more accurate results. Currently, we just focus on the taxi-out
time prediction for departing flights, comprising around 67,000
movements prior to outlier rejection.

B. Outlier identification

Outliers are designated as movements with excessively long
delay times, as well as trajectories with excessively short
movement times. The former group of movements accounts
for trajectories that hold for non flow-related reasons, while
the latter group of movements could account for trajectories
that were incorrectly processed. Table IV lists the set of
identification criteria used. Approximately 62,000 departure
trajectories remain after outlier rejection, which is then divided
into training, validation and testing sets via a 70-20-10 split.
The test set comprises the last 10% of movements in the
dataset (in chronological order), while the remainder of the
data is evenly divided between the train and validation sets.

5



TABLE IV. OUTLIER IDENTIFICATION CRITERIA.

Criteria Description
Hrwy > 600s Excessively long holding time at the runway.
Htwy > 600s Excessively long holding time at the taxiway.
Hramp > 600s Excessively long holding time on the apron.
Htwy,res > 60s Residual (i.e., non-flow related) taxiway

holding time.
Htotal > 1200s Excessively long total holding time.
tunimp,rwy < 12.5s Excessively short unimpeded taxi time at the

runway.
tunimp,total < 45s Excessively short total unimpeded taxi time.
timp,total < 60s Excessively short total impeded taxi time.
dest < 300m Excessively short ’first-order’ approximation

of taxi distance.

C. Graph pruning

Based on the methodology presented in Section III-A, a
set of anchor nodes, Vα ∈ V , can be extracted from the taxi
route. V ′ can be derived from Vα by filtering out the nodes
exceeding some distance threshold dthresh to Vα:

V ′ = v ∈ V ∀ mindist(v, Vα) < dthresh

where the mindist(v, V ) operator simply returns the min-
imum path distance between v and the set of nodes in V .
Subsequently, E′ is obtained by only retaining edges with
source and target nodes in V ′. A second stage of pruning is
performed by only retaining edges with non-zero flow features,
then removing nodes that are not connected to any edges. The
result of the pruning for a particular trajectory is shown in
Figure 3.

Figure 3. Results of the first (left) and second (right) stages of the graph
pruning with dthresh = 500m; remaining edges highlighted in red.

As shown in Table V, graph pruning greatly reduces the size
of the resulting graph, by more than an order of magnitude
in most trajectories when dthresh ≤ 500m, thereby improving
CPU memory requirements and computational efficiency.

TABLE V. GRAPH PRUNING, SHOWING THE NUMBER OF NODES/EDGES IN
THE ORIGINAL GRAPH, THEN AT DIFFERENT VALUES OF dthresh

Original 500m 250m 200m 50m
NV NE NV NE NV NE NV NE NV NE

Mean

1882 2713

208 266 112 140 85 101 81 99
Min 25 24 25 24 25 24 25 24
Max 468 712 268 397 209 291 190 269
95% 275 367 163 212 132 165 119 152

D. Model Architecture

The GNN model architecture is presented in Figure 4.
At the start of the model, different input types are passed
through a series of dense layers to obtain their respective
encodings. Graph features, comprising the node, as well as
static and dynamic edge encodings, are then processed in
a spatio-temporal block, comprising a spatial block nested
inside a temporal block. Graph convolutions are performed
within the spatial block, and a global pooling is performed
on the transformed graph to obtain global graph features at
each convolution step. The outputs of all convolution steps are
passed through a dense layer to obtain the spatial encoding for
time t. The spatial encoding timeseries are then passed through
another dense layer to obtain the spatio-temporal encodings.
Finally, the spatio-temporal encodings are concatenated with
the global encodings, then passed through another series of
dense layers to obtain the final output.

We use the Graph Transformer with edge features (Eqs 1
to 4) as the graph convolution operator, and the soft attention
mechanism (Eq 5) as the global pooling operator.

V. RESULTS AND DISCUSSION

We compare the GNN results with the following models:
• Naive: We take a naive estimate by assuming the mean

value of the training/validation dataset;
• APO: Predictions are made using the FAA APO method-

ology [14];
• PRU: Predictions are made using EUROCONTROL’s

PRU methodology [15]; and
• GBM: The GNN’s global features used to train a tree-

based model based on Gradient-Boosted Machines.
Both impeded and unimpeded taxi-out time predictions

on the test dataset are used for comparison, with the error
distribution presented in Figure 5 and comparison metrics
presented in Table VI, comparing the root mean squared
error (RMSE), mean absolute error (MAE) and mean absolute
percentage error (MAPE) of the different models. As the PRU
and APO methods were originally developed to estimate the
unimpeded taxi time, slight modifications have been made to
account for the impeded taxi time. A point to note is that these
two methods were originally intended to be used as high-level
metrics for airport performance monitoring and review, not for
tactical planning. However, it is useful to include them here
as a baseline when comparing the prediction performance of
our model.

TABLE VI. TAXI-OUT TIME PREDICTION RESULTS.

Model Impeded taxi-out time Unimpeded taxi-out time
RMSE MAE MAPE RMSE MAE MAPE

Naive 216.4s 171.9s 39.3% 126.2s 102.0s 32.6 %
PRU 199.2s 159.8s 33.9% 115.1s 86.5s 22.1%
APO 123.1s 101.3s 26.8% 114.3s 91.4s 34.9%
GBM 78.4s 57.3s 11.6% 51.1s 39.5s 10.9%
GNN 76.0s 55.2s 11.0% 50.1s 38.4s 10.4%

GBM and GNN-based models outperform the standard
models by quite a significant margin – about 60% reduction

6



Figure 4. GNN architecture.

in RMSE and MAE relative to the PRU method, and 40%
relative to the APO method. Comparing between the PRU and
APO methods, the APO prediction gives a lower error in the
impeded taxi-out time than the PRU prediction. This is most
probably because the APO model includes a regression on the
number of taxi-in and taxi-out movements for each carrier,
whereas the PRU method assumes a median the unimpeded
taxi time for each runway-stand pair (we further obtain the
impeded taxi time by assuming a mean additional taxi time
of each runway-stand pair, and adding this value to the
unimpeded taxi time).

Both GNN and GBM models have a test MAE of under 60
seconds, suggesting that both models are, on average, able to
satisfy the desired taxi-time accuracy of ±2 mins for tactical
movement planning. As shown in Fig 5, the impeded taxi time
prediction errors for the GNN and GBM models are contained
within a relatively narrow band, with the first and third
quartiles of the GNN error falling between -33.2s to 48.2s, and
that of the GNN falling between -52.3s to 31.5s. Impeded time
prediction errors falling outside the ±120s range correspond
to the [5.0, 96.0] percentiles for the GNN model and the
[4.9, 94.9] percentiles for the GBM model (both corresponding
to around 90% of predictions in the test set). In spite of its
relatively simplicity, The GBM model performs surprisingly
well, with only a slightly lower accuracy when compared with
the GNN model (approximately 2s difference for impeded and
1s difference for unimpeded taxi-out time prediction). This
suggests that the global feature set is sufficient to obtain good
estimates for both impeded and unimpeded taxi-out times.

With comparable performance of both GNN and GBM
models, the relative simplicity of the GBM model gives it an
advantage in terms of implementation, while also possessing a
relatively high level of model interpretability due to the tree-
based algorithms used. On the other hand, while relatively
more complex, the GNN framework offers greater flexibil-
ity, with the potential for improved prediction performance

through either the inclusion of other graph-based features,
or with modifications to the model architecture. Furthermore,
there is scope for extending the GNN model, beyond the
graph-level task presented here, to other types of inference
tasks – for example, taxiway speed/flow prediction (edge-level
tasks) or hotspot prediction (node-level tasks).

VI. CONCLUSION

This paper presents a methodology for the prediction of
variable taxi-out time using GNNs. The data pipeline describ-
ing the key data processing and feature engineering stages
is first presented, followed by the model architecture and
validation results. Each aircraft trajectory is represented by
a subset of the airport graph, incorporating features that
describe the airport taxiway topology as well as projected
flow estimates. For ease of operational implementation, the
model only includes features that are readily obtainable from
tactical planning information. Model testing results show that
the GNN model outperforms standard methodologies used by
the FAA APO and EUROCONTROL’s PRU. Additionally,
the GNN-based model is also seen to outperform conven-
tional machine-learning methods such as GBMs, albeit by a
small margin. Results from the model testing also suggest
that impeded taxi-out predictions of both GNN and GBM
models are accurate enough to be used in tactical movement
planning, with a test MAE of under 1 minute, and 90% of
the predicted impeded times being accurate to within ±2
mins. These findings support the use of data-driven approaches
for the provision or reliable variable taxi time predictions,
particularly for large airports with complex taxiway layouts.
The outputs of the proposed model will be important in sup-
porting more advanced ACDM functionalities for tactical/pre-
tactical surface movement planning and optimisation, such as
pre-departure sequencing, mixed-mode runway operations, or
Arrival/Departure management (AMAN/DMAN) integration.

Future work will verify the model’s generalisability to other
airports by comparing its performance on different datasets.

7



Figure 5. Error distributions of the different models. The thick bars denote the data between q1 and q3, while the whiskers denote data within q3±1.5×(q3−q1),
where q1 and q3 are the first and third quartiles respectively.

Additionally, ongoing research on feature engineering and
architecture design can contribute towards further improving
the GNN model performance. Future research will also look at
incorporating the model in a surface planning and management
framework for ACDM, while investigating mechanisms to
support greater explainability of machine learning techniques
in ATCO decision support tools. Finally, it might be useful to
explore the applicability of the GNN approach presented in
this paper to other aspects of air traffic management beyond
surface operations, since many processes in the air traffic
system can also be modelled by graphs.

ACKNOWLEDGMENT

This work was conducted under the Saab-NTU Joint Lab
with support from Saab AB (publ). The authors are grateful
to Mr Daryl Tan for his expertise and inputs to this project.

REFERENCES

[1] EUROCONTROL, “A-CDM impact assessment,” EUROCONTROL,
Report, 2016.

[2] O. Delain et al., “PJ.04 - Total Airport Management (final project
report,” SESAR, Report, 2019.

[3] M. Schultz et al., “A-CDM lite: Situation awareness and decision-
making for small airports based on ads-b data,” in 9th SIDs, 2019.

[4] EUROCONTROL, “Airport CDM implementation manual,” EURO-
CONTROL, Report, 2017.

[5] T.-N. Tran et al., “Taxi-speed prediction by spatio-temporal graph-based
trajectory representation and its applications,” in ICRAT, 2020.

[6] M. Jeong et al., “Unimpeded taxi-time prediction based on the node–link
model,” J Aerosp Inf Sys, pp. 1–12, 2020.

[7] H. Lee et al., “Prediction of pushback times and ramp taxi times for
departures at Charlotte Airport,” in AIAA AVIATION 2019 Forum, 2019.

[8] S. Badrinath et al., “Integrated surface–airspace model of airport depar-
tures,” J Guid Cont Dyn, vol. 42, no. 5, pp. 1049–1063, 2019.

[10] R. D. Windhorst et al., “Validation of simulations of airport surface
traffic with the surface operations simulator and scheduler,” in 13th
ATIO, 2013.

[9] J. Yin et al., “Machine learning techniques for taxi-out time prediction
with a macroscopic network topology,” in 37th DASC, 2018, pp. 1–8.

[11] “SIMMOD manual,” FAA, Report.
[12] J. Boesel et al., “TAAM best practices guidelines,” MITRE, Report,

2001.
[13] Y. Zhang and Q. Wang, “Methods for determining unimpeded aircraft

taxiing time and evaluating airport taxiing performance,” Chinese J
Aeron, vol. 30, no. 2, pp. 523–537, 2017.

[14] FAA, “U.S./Europe comparison of ATM-related operational performance
2010,” FAA, Report, 2012.

[15] L. Capelleras, “Additional taxi-out time performance indicator docu-
ment,” EUROCONTROL, Report, 2015.

[16] W. Fan et al., “Graph neural networks for social recommendation,” in
TheWebConf, 2019, pp. 417–426.

[17] A. Sanchez-Gonzalez et al., “Learning to simulate complex physics with
graph networks,” in ICML, 2020, pp. 8459–8468.

[18] J. Jumper et al., “Highly accurate protein structure prediction with
AlphaFold,” Nature, vol. 596, no. 7873, pp. 583–589, 2021.

[19] J. Gilmer et al., “Neural message passing for quantum chemistry,” in
ICML, 2017, pp. 1263–1272.

[20] R. Dalmau and E. Allard, “Air Traffic Control using message passing
neural networks and multi-agent reinforcement learning,” in 10th SIDs,
2020.

[21] W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A
survey,” arXiv preprint arXiv:2101.11174, 2021.

[22] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th ICLR, 2017.

[23] W. L. Hamilton et al., “Inductive representation learning on large
graphs,” in 31st NeurIPS, 2017, pp. 1025–1035.

[24] P. Veličković et al., “Graph attention networks,” in 6th ICLR, 2018.
[25] J. Chen and H. Chen, “EGAT: Edge-featured graph attention network,”

in ICANN, 2021.
[26] V. P. Dwivedi and X. Bresson, “A generalization of transformer networks

to graphs,” in DLG-AAAI, 2021.
[27] M. Zhang et al., “An end-to-end deep learning architecture for graph

classification,” in 32nd AAAI, 2018.
[28] O. Vinyals et al., “Order matters: Sequence to sequence for sets,” in 4th

ICLR, 2016.
[29] Y. Li et al., “Gated graph sequence neural networks,” in 4th ICLR, 2016.
[30] “Describing the weather impact algorithm developed by the ATMAP

project,” EUROCONTROL, Report, 2011.

8




