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7 av. Édouard Belin, 31055 Toulouse Cedex, FRANCE
Abstract—Conformal automation allows for increased ac-

ceptability of automation tools in air traffic control. The
key enabler for achieving conformity of automation tools
in performing expert tasks, for example air traffic conflict
resolution, is the identification of ATCO preferences (conflict
resolution strategies) and its ability to learn and recommend
similar strategies. This research proposes a machine learning-
based framework to learn and predict the air traffic conflict
resolution strategies using an ensemble model of regressor
and classifier chains. This framework enables the prediction
and generation of a complete conflict resolution profile of the
maneuvered aircraft. Similar and contrasting ATCO conflict
resolution strategies are collected through human-in-the-loop
experiments, using a real-time, high fidelity simulation envi-
ronment, for model training and evaluation. The prediction
results demonstrate that the ATCOs strategies encoded in the
collected data can be learned by the model with high accuracy
(95.1%, 93.7% for choice of aircraft) and low MAE( 0.38 Nm
and 0.52 Nm for maneuver initiation distance) for the ATCOs’
datasets. These results demonstrate high conformance of the
model predicted maneuvered trajectories with the original
ATCOs maneuvers.

I. INTRODUCTION

The primary tasks of an ATCO are to ensure safe, orderly
and efficient flow of air traffic, with safety at the highest
order of precedence. In an event of a predicted loss of
separation, a controller must device a strategy to resolve
the conflict. A conflict resolution strategy may include
several maneuvers (horizontal, vertical, speed change, or a
combination of these) for ownship or intruder, and to finally
merge the deviated aircraft to its originally intended flight
path, as illustrated in Figure 1. While vertical maneuvers
appear to be more efficient in resolving conflicts in a
single maneuver without the need of subsequent monitoring,
lateral maneuvers are preferred for ‘strategic’ conflict reso-
lution. This is because such maneuvers cause significantly
less discomfort to the passengers and do not distort the
vertically stratified structure of the airspace [1].

Several automation tools are available to the ATCOs such
as STCA and MTCD. However, the ATCOs seldom rely on
the conflict alerts given by such tools and more on their
own judgement and experience. For example, the MTCD
system is rarely used by the ATCOs owing to its high
false alarms and missed detects [2]. The primary reason of
mistrust between ATCOs and such automation tools is the
lack of conformance in how ATCOs perceive the conflict
scenarios and how such automation tools provide resolution
advisories.ATCOs provide safe and efficient resolutions for
potential conflict scenarios. Over time, ATCOs develop

some inherent preferences in managing conflicts, which
can be termed as conflict resolution strategies. Automation
tools that can take into consideration the ATCO strategies
for conflict resolution may assist in better management
of ATCOs’ workload through high acceptance of such
automation tools.

On this premise, this research proposes a novel machine
learning-based framework and presents results from the
initial experiments to predict the ATCO flight conflict
resolution strategies during potential conflicts situations.
The results from this initial study demonstrate that it is
a viable approach to develop ATCO conformal automation
tools which are capable of generating ‘ATCO like’ conflict
resolution strategies.

II. LITERATURE REVIEW

Approaches to develop conflict detection and resolution
automation tools have evolved from using mathematical
algorithms [3], modelling and optimization approaches us-
ing heuristics and constraint programming [4], to new
perspectives using machine learning and deep reinforcement
learning(DRL) [5], [6]. Although RL and DRL methods
have gained attention in terms of their ability to better
address complex decision making problems in air traffic
control [7], such projects are related to fully autonomous
ATCO systems and limited in using human element needed
for conformity of resolution advisories by such automation
aids [8]. In general, a strategy is a high-level decision-
making process or the art of employing a method or a plan
towards a goal [9]. Autonomous agents’ strategies in games
have been discussed in many benchmark papers like playing
Alpha GO [10], where the agents opt for strategies that
maximize the overall reward, even accepting penalties with
a potential of higher delayed rewards. Within the scope of
flight conflict resolution, a strategy is a high-level decision-
making process to avoid a potential conflict. Strategies used
by agents in such games are strikingly different from flight
conflict resolution strategies where immediate rewards carry
immense weight. Researchers have also defined it as a
sophisticated planning skill, which is an essential element of
the ATCOs’ skills allowing them to handle a large amount
of traffic while reserving their cognitive resources [11]. This
includes decisions of aircraft maneuver choice, choice and
time of maneuver direction, the extent of the deviation and
where to merge the aircraft to its initial path.

Automation tools are not readily accepted by the ATCOs
because of the failure to understand why automation tools
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Figure 1. Conflict representation with a pair of aircraft bound to witness a loss of separation. As a conflict resolution maneuver, one aircraft initiates
a maneuver at point p1, is deviated to point p2 and then merged into its initial path at point p3. This represents the complete resolution profile of the
maneuvered aircraft for this case.

propose a particular resolution. In many instances, the pro-
posed resolution is completely different from the ATCOs’
preference for a particular scenario. Hence, it is imperative
to identify these inherent strategies, which the ATCOs use
while resolving flight conflicts. Methods that incorporate
ATCO preferences in providing solutions or provide ‘ATCO
like’ solutions have a higher probability of acceptance and
deployment for real-world applications [12]

There have been research attempts to identify strategies
used by ATCOs in arrival sequencing and coping with
uncertainties in air traffic control [11]. Researchers have
also attempted to provide conformal automation for air
traffic control by learning conflict resolution maneuvers
through operator demonstrations [13]. Though this work is
significant in terms of learning from ATCO demonstrations,
the scenarios are standard two aircraft conflicts with conflict
angles of 45◦, 90◦ and 135◦, and the ATCO can only
maneuver a predecided aircraft (A/C 2). Rooijen et al. [14]
used a convolutional neural network architecture (CNN)
which utilized solution space diagram (SSD) images to learn
the resolution maneuvers. One of the limitations of this
work is that the results provide only the initial maneuver and
not the complete conflict resolution profile. Also, though the
authors refer to these results as ‘strategies’, a better inter-
pretation here would be ‘predicting the controller actions’.
This is because the inherent ATCO strategies should guide
the type of resolution action for a given conflict, which is
the potential research gap.

The previous research efforts have majorly been to iden-
tify resolution maneuvers from historic data using different
algorithms or classify the resolutions into categories. A
major problem with these approaches is that historical
data such as the ADS-B do not contain any potential
flight conflict since ATCOs already intervene and resolve
such situations. Moreover, it is difficult to identify indi-
vidual ATCO strategies from the historical data. ATCOs
dominantly rely on the spatial and temporal patterns of
traffic rather than the instantaneous positions of the aircraft
[15]. Further, most of the research is focused on tactical
conflict resolution, leaving significant research prospects in
the strategic component of flight conflict resolution and
understanding ATCO’s conflict resolution strategies.

In this research, the proposed framework consists of two
key components: first, identifying ATCOs’ conflict resolu-
tion strategies, and second, implementing a machine learn-
ing model to learn these strategies. To achieve this, human-
in-the-loop experiments were conducted in a high-fidelity
real-time simulation environment wherein the ATCOs were

presented air traffic conflict scenarios. The conflict reso-
lution maneuvers were analyzed to identify similar and
contrasting conflict resolution strategies. These strategies,
encoded in the data, were used as inputs to the learning
model to test the generalization performance.

The document is organized as follows: Section III de-
scribes the problem formulation and the underlying assump-
tions. The research methodology is described in Section IV.
Section V discusses the simulation environment, conflict
generation and data pre-processing to extract features for
the learning algorithm. This is followed by a discussion on
ATCO strategies identification in section VI and machine
learning algorithm details in section VII. The results and
discussions are cumulated in section VIII with the conclu-
sion and discussions in section IX.

III. PROBLEM FORMULATION

A conflict resolution strategy, S, can be mathematically
represented as a ordered tuple of the governing elements,
i.e, choice of aircraft (C), Maneuver initiation time (T),
maneuver direction (D), cross track deviation (Dc) and
merging waypoint (M) such that S = (C,T,D,Dc,M). Each
element in S takes value from the feasible actions avail-
able in its domain. In particular, C ⊂ {ownship, intruder},
T ⊂{Tsim, ....,Tlos}, D⊂{le f t,right}, Dc⊂{0, ....,Dbound},
M ⊂ {list of waypoints available after T}.

Here, ownship and intruder are the two aircraft in conflict,
Tsim is the current simulation time, Tlos is the simulation
time at loss of separation and Dbound is the distance of the
maneuvered aircraft from sector boundary.

The complete conflict resolution strategy is captured
in the collected data which is then transformed into a
supervised machine learning problem as follows. Given a
set of N training examples of the form {(X1, Y1), (X2,
Y2)... , (Xm, Ym)}, such that Xi is the feature vector of
the ith training example of shape (1×n) where n represents
the numbers of features and Yi is the target variable, the
learning algorithm seeks a function f : X → Y which best
maps X to Y, where X is the input space and Y is the output
space. For the pth model in a chained prediction sequence,
the dimensions of the initial dataset X(m×n) changes to
X(m×(n+p)) as the predictions from the previous models
are added to the input features for subsequent predictions.

The main assumptions for this research were:

• The conflict resolution maneuvers were restricted to
the lateral direction, to isolate and enable a detailed
analysis of ATCO strategies in the lateral direction.
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Figure 2. Four modules constituting the research framework in this study: (1) Data Generation, (2) Data analytics and visualization, (3) Feature extraction
and (4) Machine learning model.

• ATCOs were instructed to resolve the primary conflict
and not any subsequent conflicts arising from the initial
maneuver. This is because ATCOs typically resolve
conflicts in a pairwise approach [16]. In other words,
when resolving conflicts, the ATCOs first look at
individual conflict pairs and come up with a suitable
resolution and later, check its impact on the overall
traffic. It must be emphasised that though this as-
sumption exists, the primary resolution were performed
considering the surrounding traffic.

IV. RESEARCH METHODOLOGY

The research methodology is grouped into four modules
with their internal architecture, as shown in Figure 2.
Module 1 consisted of generating conflict simulation data
with python scripts and specifications of Sector 6 waypoints
and airways, with reference to Singapore FIR. The conflict
resolution maneuvers from the ATCOs were obtained on
these real time conflict scenarios. Module 2 consisted of
analytics, visualization and comparison of the resolved
trajectories obtained from module 1. This enabled the
identification of the ATCOs’ conflict resolution strategies.
Module 3 comprised the feature extraction process. This
made use of the sector information and comparison of
initial conflicting flight trajectories and the resolved flight
trajectories at each time step. Module 4 used the proposed
machine learning model to predict the components of the
conflict resolution strategy, S, and enabled the generation
of the complete conflict resolution strategy. These predicted
trajectories were analyzed for conformity with original ma-
neuvered trajectories obtained from module 2. The details
of each module are presented in the following sections.

V. CONFLICT SIMULATIONS AND DATA ANALYSIS

A. Simulation environment

In order to observe the actual ATC behaviour in conflict
situations, it is imperative to perform experiments in a
simulation environment which replicates the ATCO radar
interface. Hence, the ESCAPE Light Simulation Platform,
developed by Eurocontrol, was used to capture the ATCOs’
conflict resolution strategies [17].

ESCAPE Light is a high-fidelity, real-time, high-
performance academic version of the ESCAPE simulator. It
provides functionalities such as airspace design for en-route
and TMA, flight plans input, complete flight trajectory ex-
traction, the information of Base of Aircraft DATA, to name

a few. Figure 3 shows an instance of the simulation where
six aircraft are inside sector 6 and one aircraft approaching
the sector. Flight GA11 has performed a heading change
maneuver to avoid a potential conflict with flight QR11.

Figure 3. A snapshot of ESCAPE Light ATCO radar screen interface with
Sector 6 of the Singapore FIR. It is visible that flight GA11 has performed
a heading change maneuver to avoid conflict with flight QR10.

B. Conflict scenario generation

Sector 6 of the Singapore FIR was selected to perform
experiments. This is because the dynamics of Sector 6
enables detailed analysis of crossing conflicts airways as
compared to other sectors and is at sufficient distance to
consider en-route flight operations. Figure 4 illustrates the
conflict scenario data generation process. Using Singapore
FIR as a reference, the airways and conflict points in
sector 6 were selected. Co-ordinate information of the sector
and the waypoints were input to the simulator and pairs
of conflicting flight routes were identified. Subsequently,
offsets were created to ensure that the flights experience a
loss of separation on these routes. The start time of every
flight was perturbed by adding a randomized noise in the
form of time so that though the conflict were ensured, they
were not exactly the same.

C. Data pre-processing and feature extraction

The generated flight conflict data was uploaded to the
simulation environment and ATC inputs in the form of
conflict resolution maneuvers were obtained. These ma-
neuvers were stored as flight trajectories in XML format,
at an interval of 5 seconds. From these trajectories, the
desired parameters of time, longitude, and latitude were
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Figure 4. Conflict flight plan data generation pipeline. These flight plans
were used as inputs to the simulation environment.

filtered. Further, the data was filtered to remove cases where
some trajectories were not completely recorded because of
simulation runtime errors.

Features representing a conflict scenario were grouped
into 3 categories: (1) Conflict pair features (C.P), (2)
Surrounding environment features (S.F), and (3) Resolution
maneuver features (R.F). Features pertaining to conflicting
flight pairs and the surrounding environment were extracted
through the information of sector dimensions, airways in-
formation, and the locations of flights. For the target vari-
ables i.e the resolution maneuver features, the maneuvered
flight trajectories were compared with the original flight
trajectories, as shown in Figure 5. Table I shows the list of
features extracted from the data and used for the learning
algorithm. The abbreviations TCP, CPA, and L.O.S refer to
the trajectory change point and the closest point of approach
and loss of separation, respectively.
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Figure 5. Comparing flight trajectories based on original flight plans with
the maneuvered flight trajectories to extract conflict resolution maneuver
features.

VI. IDENTIFYING ATCOS STRATEGIES

To identify the potential strategies, the ATCOs were pre-
sented with conflicts in the simulation environment. Aircraft
appeared approximately 20 Nm outside the sector so that
the ATCOs have situational awareness about the aircraft
entering their sector. Both the ATCOs were presented with
the same conflicts and their resolved flight trajectories were
recorded by the system. The total conflict scenarios resolved
by both ATCOs were 612 and 571 respectively.

TABLE I. DESCRIPTION OF THE FEATURES EXTRACTED FROM ATCOS’
DATA AND THEIR ABBREVIATIONS USED IN THE FIGURES.

Feature name Type Abbreviation in figures
Initial heading: resolved flight

C.P

initialhead resolved
Initial heading: unresolved flight initialhead unresolved
Conflict angle conflict angle
Distance from conflict point to
maneuver start mantoconflict dres

Distance from conflict point to the
location of unresolved flight when
maneuver starts

mantoconflict dunres

Direction of TCP wrt maneuvered flight tcp direction
Direction of unresolved flight wrt TCP unresolvedflight dirn
Distance of sector boundary from TCP

S.F

distfrombound TCP
Distance of sector boundary from
maneuver start d bound manstart

Distance of CPA of resolved flight from
sector boundary d bound CPA

Number of neighboring aircraft neighbouring ac
Mean distance of neighboring aircraft from
the resolved aircraft at maneuver initation meandistance

Time prior to L.O.S when the resolution
maneuver is initiated

R.F

timetoresolution

Distance prior to L.O.S when resolution
maneuver is initiated d resstart CPA

Heading angle headingAngle
Max. cross-track deviation crosstrack dist max
Merging waypoint name mergewp name
Distance between merging waypoint and TCP mergpt TCPdist
C.P: Conflict pair feature; S.F: Surrounding environment feature; R.F: Resolution feature

Figure 6 shows the resolution maneuvers for ATC A (a)
and ATC B (b) for the same conflict scenarios. To identify
the ATCOs’ strategies, these trajectories were first analyzed
separately and then compared, to establish the similarities
and differences between the two ATCOs’ strategies.

(a)

(b)

Figure 6. Resolved flight trajectories for ATC A (a) and ATC B (b)

As discussed earlier, the primary task of the ATCO are
to ensure safe, orderly and efficient flow of air traffic, with
safety at the highest order of precedence. Once the primary
target of safety is met, different ATCOs might tweak their
preferences between order and efficiency at their discretion.
Only a qualitative measure of ATCO strategies can be
documented when discussing the strategies in isolation.
Hence, the strategies of the two ATCOs are discussed in
parallel to establish quantitative measures of the identified
strategies. For two of the five conflict points, the maneuvers
for ATC A and ATC B are shown in Figure 7.

1) Choice of aircraft to maneuver: The first identified
strategy was the choice of aircraft to maneuver. ATC A
demonstrated a consistent strategy to choose the aircraft
farther from the potential conflict point to perform a res-
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Figure 7. Resolution maneuver preference for ATC A (Column 2) and ATC B (column 3) for the five conflict points in Sector 6. The initial flight
paths are shown in column 1. The conflict waypoints for corresponding airways are indicated by black markers. Out of the five conflict locations, two
representative cases are shown in the figure.

olution. Out of the total 612 conflict pairs this strategy was
employed for 432 cases. This is a viable strategy because
providing a path stretch to the farther aircraft will always
ensure the required safe separation. The cases where the
nearer aircraft were chosen were the ones where it was
fairly difficult to visually identify the aircraft that is nearer
or farther from the conflict point. ATC B on the contrary
had mixed preferences in terms of choice of the aircraft to
maneuver. Out of all the conflict pairs presented to ATC
B, ATC B opted for the aircraft nearer to the conflict point
323 times and maneuvered the farther aircraft 248 times.
Certainly, these initial strategies have an influence on the
subsequent components of the complete resolution profile.

2) Direction of resolution maneuver: It is evident from
Figure 7 that in terms of the maneuver direction, ATC A
demonstrated a consistent strategy of directing the maneu-
vering aircraft to the tail of the leading aircraft. In other
words, the maneuvers were consistently directed within the
region bound between the conflicting aircraft trajectories.
This strategy complements the choice of aircraft to maneu-
ver, as directing the farther aircraft to the tail of the nearer
aircraft ensures avoiding any loss of separation. For ATC B
there were two kind of strategies as are visible from figure
7. For conflict scenarios such as Figure 7, column 3:(i) the
resolution strategy was similar to ATC A. In the remaining
conflict configurations, it is observed that in some instances
ATC B directed the aircraft away from the region bounded
by the two aircraft trajectories.

3) Maneuver initiation time (MIT): The maneuver initia-
tion time is the time remaining prior to the loss of separation
when the resolution maneuver is initiated. Analytics of the
resolved trajectories revealed that ATC A had a strategy to
perform delayed maneuvers. The average MIT for all the
conflict scenarios for ATC A was 6.62 minutes with only 3
resolutions between 10 to 11 minutes of MIT. On the other
hand, for ATC B, the average MIT prior to a conflict was 8.7
minutes with 240 conflict scenarios with MIT greater than
10 minutes. MIT is translated to distance prior to resolution
initiation to assist in better interpretation in Section VIII. It
can be inferred that ATC B’s strategy involved performing

early maneuvers, which can be seen in Figure 8 (a) and also
through visualization of maneuvers in figure 7.

4) Cross track deviation (CTD): The cross-track devi-
ation is the extent to which the aircraft laterally deviates
from its original flight track. The CTD for ATC A ranged
between 2.64 Nm to 21.49 Nm, with an average CTD of
10.98 Nm. For ATC B the CTD values ranged between
2.71 Nm to 29.8 Nm with an average CTD of 16.07 Nm. It
is clear that ATC B’s conflict resolution strategy involved
larger CTD, possibly to ensure that the separation standards
are maintained and subsequent resolution maneuvers are
not required. These deviations can also be attributed to the
extent of training in a particular sector and the level of
confidence of the ATCOs in the assigned maneuver.

5) Merging distance: Merging distance refers to the
distance from point of maximum cross-track deviation to the
waypoint where the deviated flight is merged to its original
flight route. It depends on the choice of waypoints available
to redirect the flight to its original path, keeping in mind
that the maneuver is not too aggressive. From Figure 8, it
is visible that the flights maneuvered by ATC B traveled a
larger distance from the CTD to the merging waypoint. A
key observable pattern here is the consistency of waypoint
selection by the ATCOs. For instance, in Figure 7 (ii),
column 3, though the ATC B had varying preferences for
the maneuvering direction, the merge point for all the flights
was consistently KILOT, although MABAL was available
as s feasible option to ATC B in a significant number of
scenarios. In contrast, ATC A merged the aircraft to any
one of the available options of MABAL and KILOT. This
is indicative of some visual markers that ATCOs possess
to lower the airspace complexity in conflict situations with
higher surrounding traffic and maintain consistency of flight
route patterns in the concerned sector.

6) Aircraft Separation achieved for resolved conflicts: It
is critically important to understand the ATCO preferences
in terms of the desired separation standards. Although the
mathematical or machine learning algorithms might produce
resolution maneuvers that are extremely efficient, they may
not be acceptable to the ATCOs due to their preferences of
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safety buffers. Analytics of the resolved flight trajectories
revealed that both the ATCOs had similar preferences in
terms of the desired separation standards, which is visible
in Figure 8.(d). The average separation provided by ATC A
for all conflict scenarios was 8.49 Nm and for ATC B the
value was 8.82 Nm. The minor deviation was due to some
extreme outliers in the case of ATC B. It is evident that
both ATCOs prefer some safety buffers and in addition to
the 5 Nm safety separation standard in the lateral direction.
In the current case, both ATCOs have similar strategies of
similar buffers while resolving conflicts.

Figure 8. Comparative analysis of different phases of a resolution strategy
for both ATCOs.

VII. LEARNING AIR TRAFFIC CONTROLLER
STRATEGIES

A. Machine learning model

Section VI discussed the prominent strategies which
can be identified through data analytics of the controller
resolution maneuvers. This section demonstrates how well
a robust machine learning algorithm can generalize and
learn these strategies. A very popular and robust approach
is to develop an ensemble of learners such as decision trees
and aggregate the predictions of these individual trees. This
approach is also known as random forests. Random forests
are successful in regression and classification tasks because
unlike decision trees, they are less prone to over-fitting.
Each tree is trained using a bootstrap sample of the training
data, and at each node, the best split is selected from a
random subset of the predictor variables. This ensures that
each tree utilizes the training data and predictor variables
in a different way, reducing its statistical dependence on
the other trees. After hyperparameter tuning, the number of
trees in the forest and the maximum depth were kept the
same for the ATCOs’ datasets, at 500 and 10. Limiting the
maximum depth of each tree also prevents data overfitting.

Five random forest models were used to predict the
complete resolution profile of a conflict, using the Scikit-
Learn library. A complete resolution profile incorporates
the following components - conflict resolution initiation
time, choice of the aircraft to maneuver, issued heading,
cross-track deviation, and the choice of merging waypoint.
The predictions for classification or regression made by

the preceding models were used as input features to the
subsequent models. This methodology is also known as
chained predictions. Chained predictions enable the genera-
tion a complete resolution profile for a conflict with the only
drawback that the errors in the initial predictions propagate
through the subsequent models as well. In hindsight, it is
advantageous from the research perspective if we want to
ascertain the actual accuracy for the complete resolution
profile predictions. Figure 9 demonstrates the flow between
the various model used for prediction.

Model 1 – RF Classi�ca�on
Cross validated predic�ons

Input features, X(m×n)

Predic�ons, �1(m×1)

Choice of aircra�

Model 2 – RF Regression
Cross validated predic�ons

Input features, X(m×n+1)

Predic�ons, �2(m×1)

Resolu�on ini�a�on �me

Model 3 – RF Regression
Cross validated predic�ons

Input features, X(m×n+2)

Predic�ons, �3(m×1)

Heading angle

Model 4 – RF Regression
Cross validated predic�ons

Input features, X(m×n+3)

Predic�ons, �4(m×1)

Cross track devia�on

Model 5 – RF Classi�ca�on
Cross validated predic�ons

Input features, X(m×n+4)

Predic�ons, �5(m×1)

Merging waypoint

Figure 9. Multiple Random Forest models representing chained prediction
sequence to predict the complete resolution profile for flight conflicts.

B. Model performance evaluation

The generalization performance of the models for both
the datasets was measured in terms of classification accu-
racy and mean absolute error (MAE).These error values are
an indicator to how well the model is able to learn and
generalize the strategies of the ATCOs, which have been
captured in the resolution maneuvers provided by them. If
ŷi is the predicted value of the ith sample and yi is the
corresponding true value, then the classification accuracy
over nsamples is defined as:

Accuracy(y, ŷ) =
1

nsamples

nsamples−1

∑
i=0

(yi = ŷi)

Similarly, if ŷi is the predicted value of the ith sample and yi
is the corresponding true value, then the the mean absolute
error over nsamples is defined as:

MAE(y, ŷ) =
1

nsamples

nsamples−1

∑
i=0

|(yi− ŷi)|

For the current datasets, 5-fold cross validation was used
in the experiments.

VIII. RESULTS

A. Prediction results

Table II shows the performance metrics for the different
random forest classification and regression models used in
the prediction task. These results demonstrate that chained
prediction can deliver close estimates of the strategies
obtained from ATCOs’ datasets. The classification accuracy
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Figure 10. Feature importance values for the random forest models for
the two ATCOs. ‘resolved acencode p’, ‘d resstart CPA p’, ‘headingan-
gle pred’ and ‘crosstrack dist max p’ represent the predicted values by
the random forest models.

for the choice of aircraft to maneuver was 95.1% and 93.7%
for ATC A and ATC B, respectively. Most misclassified
cases involved scenarios where both the aircraft of the
conflict pair were approximately at the same distance from
the conflict point. This indicates that the performance drops
in situations where ATCOs demonstrate a random selection
of aircraft to maneuver. Similarly, the classification accuracy
for ATC A’s dataset in predicting the merging waypoint
was lower potentially due to the usage of both MABAL
and KILOT as merging waypoints randomly, because both
were feasible options as shown in Figure 7.(ii). This also
highlights the challenges to the generalization approach
using supervised learning algorithms. For the other models,
the mean absolute error values are fairly small.

Figure 10 delineates crucial information about the fea-
tures used by the corresponding models to make predictions.
It can be seen that for different prediction tasks for both
ATCOs’ datasets, feature importance values differ signifi-
cantly. For example, to predict the heading angle from ATC
A’s dataset, the initial heading of both the aircraft, conflict
angle, direction of the unresolved flight are the dominant
features. On the other hand, for ATC B’s dataset, only
the initial heading of the resolved flight and the distance
of CPA from sector boundary are considered important.
Similarly, in order to predict the cross-track deviation using
the available features, (Figure10, d) the conflict angle is
the most important feature for ATC A’s dataset, but for
ATC B’s dataset, multiple other features also play a role.
Since the ATCOs’ strategies are encoded in the collected
conflict resolution data, this is a potential indicator of the
features that the two ATCs dominantly consider important
while making decisions for each case. It is also evident that
to predict the last component (merging waypoint) of the

complete resolution profile, all the predicted components of
the resolution maneuver, i.e choice of maneuvered aircraft,
the distance of maneuver initiation from the CPA, heading
angle, and the cross-track deviation, are important (Figure
10.(e). which highlights the importance of using chained
prediction models.

The performance of Random forests, XGBoost, and Sup-
port vector machines (SVM) was compared to indicate
the performance measures for tree-based and kernel-based
models (Table II). For tree-based models, random forests
and XGBoost have almost similar performance and the
differences are not significant. XGBoost has better perfor-
mance in predicting the choice of aircraft to maneuver for
the dataset obtained from ATC B. SVM with an RBF (radial
bias function) kernel has a slightly lower performance
than random forest and XGBoost for most of the models,
specifically for prediction maneuvered aircraft choice.

TABLE II. PERFORMANCE COMPARISON FOR THE SELECTED MODELS.
THE BEST PERFORMANCE VALUES ARE IN BOLD.

Model Performance (ATC A, ATC B)
Metric R.F XGBoost SVM

Classification accuracy, %
(Choice of aircraft) 95.1, 93.7 95.01, 95.07 92.45, 92.8

MAE, Nm (Maneuver
initiation distance ) 0.38, 0.52 0.47, 0.45 0.77, 1.39

MAE, Nm
(Heading angle) 5.15, 3.66 5.36, 3.15 5.70, 5.55

MAE, Nm
(Cross track deviation) 1.18, 1.63 1.29, 1.69 1.24, 1.59

classification accuracy, %
(Merging waypoint) 93.6, 99.2 92.09, 98.8 93.3, 98.8

Using the predicted values of the components of the
strategy tuple, S, complete predicted trajectories can be
recreated as shown in Figure 11. These predicted tra-
jectories are generated for the scenarios where the first
prediction i.e. the choice of aircraft is correct. It is vis-
ible that the predicted trajectories closely conform to
the actual maneuvered trajectories shown in Figure 6,
which in addition ascertains that the chained prediction
model can generalize the actual resolution preferences
of the ATCOs. For example, for the strategy tuple S =
(SQ160, 6.26 minutes, Le f t, 14.82 Nm, WP071), ob-
tained from ATC A, the predicted strategy tuple is Ŝ =
(SQ160, 6.19 minutes, Le f t, 12.32 Nm, WP071).

IX. DISCUSSIONS AND CONCLUSION

The framework proposed in this paper is a viable ap-
proach to identify and learn the ATCO conflict resolution
strategies for conformal automation. The analysis in section
VI provides key insights and highlights the strategies used
by both the ATCOs on the same conflicts, with situations
where they demonstrated similar and contrasting strategies
for conflict resolution. For the majority of the scenarios,
ATC A prefers delayed resolutions, with maneuvers by the
trailing aircraft towards the tail of the leading aircraft. The
cross-track deviations and merging distances were less when
compared to ATC B. ATC B’s strategies included early
maneuvers with a mix of preferred aircraft to maneuver
and maneuver directions, with larger values of cross-track
deviation and merging distance. The prediction performance
through chained predictions shows high conformance with
the original resolution profiles. In this work, cross-validation
was used to estimate the generalization error of the machine
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Figure 11. A comparison of the original resolutions and the resolved trajectories generated through chained predictions for ATC A and ATC B. Close
conformance of the predicted trajectories with the original maneuvered trajectories is evident from these images. Here, only two of the five conflict
points have been shown.

learning model. This is because the available dataset is too
small and the test set taken from it might not be a good
representative of the entire dataset. This may lead to high
variance over multiple runs of the model [18]. Although this
is the case, a limitation of this work is the use of the same
conflict configurations to test for conformance. With the
current methodology, it is difficult to explain the scenarios
where the choice of aircraft is wrongly predicted. Although,
the predictions error in this situation can be accredited to
the random selection by the ATCOs and the inability of the
supervised learning algorithms to identify patterns in such
situations, addressing this is proposed as an extension to
the current research. There is also a need to upscale these
initial experiments to include more controllers and complex
traffic scenarios, which will provide insights if there are
other strategies and conflict resolution patterns which exist.
Also, the effect of factors such as weather and traffic density
on these strategies is worth exploring.

Developing autonomous systems which incorporate
ATCO behaviors in air traffic control is important for the
systems to be acceptable in the operational environment.
Such systems have potential usage as advisory tools to
alleviate ATCO workload in conflict scenarios. On this
premise, the proposed framework can identify the strategies
that the ATCOs use while resolving conflict and predict
and generate the complete conflict resolution profiles for
the given conflict scenario. The predicted trajectories were
shown to have close conformance with the original maneu-
vers provided by the ATCOs and the prediction model was
able to learn and generalize the strategies significantly well.
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