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Abstract—Autoencoders, a class of neural networks, have
emerged as a valuable tool for anomaly detection and trajectory
clustering: they produce a compressed latent space and capture
essential features in the data. However, their lack of inter-
pretability poses challenges in the context of ATM, where clear-
cut explanations are crucial. In this paper, we investigate this
issue by exploring visual methods to enhance the interpretability
of autoencoders applied to aircraft trajectory data. We propose
techniques to extract meaningful information from the structure
of the latent space, and to promote a better understanding of
generative models behaviours. We present insights from two
simplified and real-world datasets and evaluate the structure of
the latent space of autoencoders. Furthermore, we introduce
suggestions for more realism in trajectory generation based
on Variational Autoencoders (VAE). This study offers valuable
recommendations to developers in the field of ATM, fostering
improved interpretability and thus safety for generative AI in
air traffic management.

Keywords — Autoencoders, eXplainable Artificial Intelligence,
Interpretability

I. INTRODUCTION

Air Traffic Management (ATM) plays a critical role in ensuring
the safety and efficiency of air travel worldwide. With the rapid
increase in aircraft data, there is a growing need for advanced
analytical techniques to gain insights into the details of aircraft paths.
Anomaly detection and clustering of trajectories have emerged as
crucial tasks in understanding and analysing this data.

Autoencoders, a special type of neural networks, have gained
popularity for their ability to compress data, identify clusters [1], and
detect unusual patterns [2], [3]. These models leverage a bottleneck
structure to efficiently capture important information while filtering
out noise and irrelevant features. The bottleneck, also called the
latent space, serves as a compressed representation of input data,
capturing essential features and patterns in a lower-dimensional
space [4]. A major limitation of autoencoders is their lack of
interpretability, as they can appear as no more than black box
models. In the context of ATM, where safety is of importance, there
are high expectation for model to provide explanations in Artificial
Intelligence (AI) models understandable to end-users.

Different types of explanations have been developed to shed light
on the behaviour of machine learning models [5]. For end-users, i.e.
Air Traffic Control (ATC) operators, we aim to provide explanations
that are detached from the underlying mechanics, making them
interpretable without requiring extensive Machine Learning (ML)
knowledge. For developers, we aim to provide explanations that
establish a clear link between inputs, weights and outputs, clarifying
the model’s behaviour and highlighting which components are
responsible for specific behaviours.

Noteworthy efforts have been made in explaining deep learning
models in the field of generative AI for computer vision and natural

language processing [6], with a particular focus on autoencoders.
Researchers have developed techniques to understand the role of
different parts of the model in generating specific outputs, enabling
control over various aspects of the generated output [7]. There is
a possibility of adapting and applying similar methods to explain
models for aircraft trajectory data.

Some explainability methods employ analytical techniques to
clarify critical aspects such as the significance of inputs, model
weights, and outputs in relation to a model’s decision-making
process [8], [9]. However, when it comes to trajectory data, using
these methods directly is quite challenging. Unlike images or text
that humans can easily grasp, trajectory data, represented as raw
numbers in tables, is more abstract and harder to understand. In
contrast, users often prefer visual representations, such as altitude
or speed profiles and 2D/3D trajectories, to comprehend trajectory
information [10]. Although such visualizations offer a more intuitive
understanding of aircraft trajectories, they may not fully expose
all relevant information crucial for interpretability. As a result, our
research direction primarily focuses on exploring visual methods
for explaining the behaviour of autoencoders applied on aircraft
trajectory data.

The existing explainability methods have primarily been applied
to computer vision and natural language processing domains [11],
with limited adaptation to time series anomaly detection using
autoencoders. These efforts have primarily focused on predicting
the next point in a time series [12], while our interest lies in
classifying, clustering, and detecting anomalies among entire tra-
jectory sequences, which falls under the category of time series
classification [13]. The unique nature of aircraft trajectory data
presents challenges in extracting relevant information to explain the
model’s behaviour.

To the best of our knowledge, no previous research has explored
methods for explaining models applied to such data. Our approach
promotes a more intuitive comprehension of model behaviour,
encompassing visual latent space analysis and exploring the intricate
relationships between dimensions within the latent space [14], [15],
[16]. Through methodologies like disentanglement, which urges the
model to decipher interpretable features relative to the input, we
aim to yield perceptive interpretations of the latent vectors and their
relationship to the input vectors [17].

This study builds upon existing techniques to enhance our un-
derstanding of how autoencoders operate with aircraft trajectory
data. We utilize both simplified datasets and real-world data to
evaluate the performance of autoencoders in detecting flight patterns.
In the following, Section II presents the background and related
work, emphasizing Air Traffic Management (ATM), autoencoders,
and explainability methods, while highlighting the necessity of
visual explanations in ATM and XAI. Methodologies, including
dataset descriptions and autoencoder architectures, are delineated
in Section III. Section IV delves into visual explanations for
autoencoder interpretability, proposing several visual methods for
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Figure 1: Architecture of a Variational Autoencoder

meaningful latent space insights. Experimental results and eval-
uations are presented in Section V, assessing visual explanation
efficacy. Implications and recommendations specific to the ATM
domain are summarized in Section VI, summarizing contributions
and suggesting future research directions in enhancing interpretable
deep learning models for trajectory data analysis in ATM.

II. LITERATURE REVIEW

The complexity of trajectory data has presented challenges for
traditional machine learning methods, leading to the adoption of
deep learning approaches to tackle the high-dimensional nature of
the data. In the field of Air Traffic Management (ATM), the use
of deep learning techniques has become increasingly popular for
various applications.

Autoencoders have emerged as powerful and adaptable tools in
Air Traffic Management, effectively addressing challenges related
to the complexity of trajectory data through clustering and anomaly
detection applications. Their widespread use and various modifica-
tions have shown promising results in enhancing the understanding
and analysis of aircraft trajectories. They have found extensive use
in trajectory clustering for different flight phases, including en-route
and terminal trajectories.

The primary goal of autoencoders is to project high-dimensional
trajectory data (N ) into a lower-dimensional latent space (n), where
N ≫ n, allowing the application of conventional clustering and
projection algorithms [4]. Notably, Olive et al. [1] employed an
autoencoder with a modified error term to create a clustered structure
of the data manifold within the latent space. Similarly, Zeng et
al. [18] used a Gaussian mixture model after feature extraction
with a deep autoencoder to identify the main traffic flow patterns in
terminal airspace.

Wang et al.[19] explored the use of autoencoders for extracting
learned features from the high-dimensional aviation data. The au-
thors also used autoencoders for deep cleaning the data, reducing the
workload on data scientists. Another study by Memarzadeh et al.[20]
developed a Robust and Explainable Semi-supervised (RESAD)
applied to aviation data. The developed model use weakly labelled
datasets to detect anomaly on landing approaches of commercial
flights.

The quest for making deep learning more understandable has
attracted significant attention in recent years, resulting in various
methods for interpreting models. These methods fall into two cate-
gories: model-agnostic and model-specific approaches [11]. Model-
agnostic techniques, like LIME (Local Interpretable Model-agnostic
Explanations) [9] and SHAP (SHapley Additive exPlanations) [21],
aim to explain how a model behaves using only inputs and outputs,
without concern for the underlying architecture. They provide expla-
nations by highlighting the importance of features with respect to the

input. Notably, Antwarg et al. [22] used SHAP in their time series
anomaly detection method to clarify the results of their autoencoder.
However, applying these techniques directly to trajectory data is
challenging due to the inherent complexity of interpreting time series
like trajectories.

On the other hand, model-specific methods, such as Layer Wise
Propagation (LRP) [8], have been prominent in making models
interpretable. LRP assigns relevance scores to neurons based on
specific rules, revealing the importance of input features in relation
to the output. Although this approach is effective in domains like
Computer Vision, applying it to aircraft trajectories faces similar
challenges as mentioned earlier.

In the domain of generative artificial intelligence, VAEs [23],
depicted in figure 1, have garnered significant interest for under-
standing their latent space. Particularly, beta-VAE [7], a modified
version of VAE with an enforced disentangling of latent vectors
through a modified loss function, has gained attention. Disentangling
means that two independent features in the input space will have
independent linked vectors in the latent space [7]. This advance-
ment has allowed researchers to manipulate and control generative
aspects of VAE models from the latent space. Higgins et al. [7]
successfully manipulated facial features and 3D chair models using
latent variables and provided interpretations of VAE-trained musical
tracks where latent variables corresponded to different aspects of the
output track.

Krauth et al. [24] delve into the computational methodology for
generating flight trajectories within the terminal zone of Zurich
Airport. The authors initially employ a VAE for the model training
phase and subsequently use the decoder to generate trajectories
based on the latent space. To improve the model’s ability to
handle time-series data, they introduce a Temporal Convolutional
Variational Neural Network (TCVAE), which is particularly skilled
at capturing temporal characteristics. Additionally, the authors uti-
lize dimensionality reduction techniques like Principal Component
Analysis (PCA) and t-Distributed Stochastic Neighbour Embedding
(t-SNE) to identify distinct clusters within the latent space. By
sampling from the proximity of these clusters, they can generate
trajectories that exhibit features closely related to those associated
with the identified clusters.

In line with these principles, our research aims to develop inter-
pretable architectures for trajectory clustering and anomaly detection
in the field of Air Traffic Management (ATM). Our objective is
to make the latent variables in the autoencoder interpretable with
respect to the decision-making process of the autoencoder.
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Figure 2: Representation of trajectories forming the toy dataset.

Figure 3: Trajectories landing at Zurich airport, runway 14

III. METHODOLOGY

A. Datasets
Our experimentation starts with a straightforward dataset com-

prising four converging trajectories, each originating from distinct
directions and meeting at a central point (Figure 2). An element of
controlled randomness is introduced to augment the variance and
add a layer of variability to the trajectory data.

Then, we shift our attention to a dataset of two months of
trajectories evolving in the Terminal Manoeuvring Area (TMA)
before landing in Zurich airport (LSZH). The dataset [25]. The
trajectories from the dataset are further preprocessed with the traffic
Python library [26]: trajectories are resampled to ensure consistency,
resulting in 100 equidistant points along each trajectory. This dataset
consists of only normal trajectories. Unusual manoeuvres such as
holding patterns and segments of trajectories after a possible go-
around are excluded from the dataset. (Figure 3)

B. Autoencoders
Autoencoders are a specific type of neural network used for

encoding and decoding tasks, assisting in reducing data dimen-
sionality and extracting a compressed, simpler feature set. The
encoder part, crucial to the autoencoder architecture, is represented
mathematically by a function f and transforms the input data vector
x into a latent space, referred to as Z.

The decoder part, in contrast, reconstructs the original input data.
Given a vector z from latent space Z, the decoder aims to reverse the
function performed by the encoder. The autoencoder learns through
unsupervised learning, concentrating on capturing inherent patterns
in the input data.

An autoencoder’s efficacy is commonly evaluated using a specific
loss function, like the Mean Squared Error (MSE). The MSE-based
loss function, L(θ), depends on the model parameters θ and is
described as:

L(θ) = 1

n

n∑
i=1

∥xi − x̂i∥2

Here, n is the total number of data points. The goal of the
loss function is to reduce the difference between the original and
reconstructed data vectors xi and x̂i, respectively.

C. Variational Autoencoders
Different from standard autoencoders, Variational Autoencoders

(VAEs) have a unique feature: they map input data not to fixed
points in the latent space but to a probability distribution covering
that space [23].

VAEs have sparked significant academic interest, especially in
generative artificial intelligence, because they encode input data as
probabilistic distributions, not fixed points, which enhances data
sampling capabilities. This makes VAEs quite useful for generative
tasks and applications where understanding the data distribution is
crucial.

VAEs work in a way that the encoder takes input data, marked
as x, and maps it efficiently to a probability distribution within a
latent or latent space, marked as z. This mapping is achieved through
parameters, symbolized as ϕ, resulting in a mapping, mathematically
expressed as Qϕ(z|x). Contrarily, the decoder takes a point in
the latent space, z, and maps it back to the original data space,
represented as x, using a different set of parameters, termed θ,
resulting in another mapping, denoted as Pθ(x|z).

Using a method called variational inference, VAEs estimate the
distribution of z based on the observed data, x, represented as
Qϕ(z|x). The parameters ϕ and θ for the encoder’s mapping
Qϕ(z|x) and the decoder’s mapping Pθ(x|z) are learned during the
optimization process, which focuses on maximizing the evidence
lower bound (ELBO) to improve data reconstruction and align
the latent space distribution Qϕ(z|x) with the predefined prior
P (z), typically chosen to be a standard normal distribution for its
simplicity and mathematical tractability.

Upon concluding training, VAEs can generate new data points by
sampling from the learned probability distribution in the latent space.
This is especially useful in tasks like image generation, as VAEs
demonstrate a powerful technique that combines neural networks
with probabilistic modelling, excelling not only in data compression
but also in generating new, similar data based on what was learned
during training. This versatility has proven very valuable in a variety
of applications, including trajectory generation [24]

IV. VISUAL EXPLANATIONS FOR AUTOENCODERS

In this section, we talk about the mathematical structure presented
in [27] to thoroughly explain the latent space of autoencoders. Our
main goal is to assign importance to each part within this many-
sided space and understand the features it has learned.

In a kind of autoencoder called variational autoencoders (VAEs),
the latent vector Z that describes the latent data shape includes
two key parts: the internal component (S) that grabs meaningful
information needed for rebuilding data, and the external component
(U) which takes care of local noise that doesn’t affect the important
information. Being able to tell the difference between and ignore
this noise is crucial to really understanding the meanings within the
latent space.
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Figure 4: 2D plot of the decoding into a trajectory and re-
encoding process in latent space.

We want to understand more about the semantics latent in this 
space. To do this, we think of these changes as interventions, where 
we carefully change a selected latent variable from z to z’ and keep 
all other variables the same. As shown in figure 4, z’ is decoded and 
then encoded again. This action results in a new latent point s, which 
is the internal part of z. This way of exploring based on interventions 
lets us examine the latent space and discover the learned features. 
The entire process acts as a response.

We introduce the following concepts from [27] to analyse the 
latent spaces:

• the latent response matrix a practical tool based on latent
responses. This matrix aims to describe the extent to which
latent variables causally affect one another in the learned gener-
ative process. Mathematically, each element Mjk in the matrix
M ∈ Rd×d quantifies the degree to which an intervention in
latent variable j causes a response in latent variable k.

M2
jk =

1

2
Ez∼p(Z);z̃j∼p(Zj)

[∣∣∣hk
ϕθ (∆(zj ← z̃j)(z))− hk

ϕθ(z)
∣∣∣2]

The diagonal elements of the matrix can be interpreted as
quantifying the extent to which an intervention along a spe-
cific latent variable is detectable. Off-diagonal elements show
how an intervention on one variable affects another, thereby
revealing the causal structure of the latent space.

• the u(z) function serves as a mathematical tool to distinguish
between a given latent sample z and its associated response s,
which is generated by the encoding and decoding operations
within the autoencoder framework. The function is defined as
u(z) = s − z ≈ hϕθ(z) − z. This function is crucial for
constructing divergence and mean curvature plots, which are
used to explore the boundaries of the latent space.

• the divergence plots are employed to visually explore the
latent space. These plots are constructed by computing u(z)
across a range of latent samples. Regions marked by pro-
nounced curvature on the divergence plot indicate areas where
|u(z)| attains its minimum values, signalling proximity to the
underlying data manifold X . These plots are instrumental in
identifying regions where u(z) experiences divergence, thus
providing insights into potential discontinuities in the latent
representation.

• the mean curvature plot serves as an invaluable tool for
dissecting the latent space’s structural intricacies. Computed
as an approximate distance function to the data manifold, the
mean curvature H is estimated using finite differencing across
a grid in the latent space. This plot illuminates regions where

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0

0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0

0.0 0.0 1.4 0.0 0.1 0.3 0.1 0.0

0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0

0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0

0.1 0.0 0.3 0.0 0.1 1.4 0.1 0.0

0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0

0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0

Figure 5: The response matrix, derived from the toy dataset, possesses 
distinct interpretative elements. The diagonal el-ements reflect response 
scores, serving as indicators of the extent to which each respective 
dimension was utilized. Alternatively, the off-diagonal elements 
represent the causal scores, elucidating the degree of causal interaction 
between each pair of dimensions.

the latent space is most likely to converge to the data manifold,
indicated by high curvature values. In essence, high curvature
corresponds to areas where u(z) is small and locally conver-
gent. The mean curvature plot not only aids in identifying
these "high curvature regions" but also offers insights into the
nonlinear characteristics of the latent manifold. For instance,
regions with notably high curvature values can guide more
meaningful interpolations between latent samples, ensuring
that the chosen path stays proximal to the data manifold. This
dual utility of the mean curvature plot—both as a visual guide
and an analytical tool—enhances our understanding of the
latent space’s topology and its relationship with the underlying
data manifold.

The introduced latent responses framework provides a systematic
approach to probe and understand the latent space of variational
autoencoders, which are a cornerstone in generative modelling. The
tools developed under this framework allow for interventions in
the latent space, thereby enabling a detailed analysis of how data
manifolds are embedded and how latent variables interrelate within
that space. This deep dive into the latent space not only facilitates
a nuanced understanding of the generative processes, enhancing the
explainability and interpretability of generative AI models [24], but
also opens avenues for identifying inconsistencies and anomalies [3],
[2] within the latent space. The ability to separate and analyse
semantic information and noise within the latent variables, as well
as to identify and quantify causal relationships therein, provides a
robust mechanism for detecting anomalies and understanding their
origins, thereby contributing to the development of more reliable
and introspective generative AI models.

Further, investigating and understanding latent spaces using these
tools can be pivotal in seeking more readable designs in artificial
intelligence. By examining the latent space and exposing the com-
plex connections between variables, researchers, and practitioners
can acquire precious knowledge about how various design choices
affect the learned portrayals and creative processes of the model.
The capability to conduct interventions in the latent space and
measure the connections between latent variables affords a means to
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Figure 6: The divergence map allows the delineation of high
and low response divergence regions.

systematically explore the impacts of different architectural elements 
and training approaches on the model’s capacity to learn significant 
and separated representations. This can, consequently, steer the 
creation of designs that are naturally more understandable, by lining 
up the learned latent variables more tightly with intuitive and 
semantically relevant factors of change in the data. Additionally, 
the understandings obtained from examining the latent space can 
also guide the creation of new regularization methods and training 
goals that expressly promote the learning of readable and causally 
relevant representations, thus making the models not only more 
comprehensible but also potentially robust and more adaptable 
across diverse and changing application domains.

V. CASE STUDIES

A. An introductory toy dataset
We commence our investigation by employing a VAE to train on

a toy dataset. During this initial phase, the VAE is trained using
a value of 2 for beta to ensure a disentangled representation in
the latent space. This dataset represents trajectories and employs
longitude and latitude as the sole feature dimensions.

The utilization of a response matrix allows us to concentrate
our analytical efforts on dimensions characterized by the highest
responses, indicating their capacity to encapsulate the majority of
relevant information. Notably, dimensions 2 and 5 demonstrate such
prominent responses.

In our examination of the toy dataset, we proceed to visualize
the projection of dataset X onto the latent space along the two
discerned latent dimensions. This projection yields the formation of
four distinct clusters, a result that aligns with our expectations. Each
cluster represents a flow in the toy dataset. The model successfully
learned and encoded the initial flow of each trajectory on these two
plotted dimensions.

Our analysis extends beyond the confines of the latent data
manifold, as our objective encompasses the comprehensive explo-
ration of the latent space. To this end, we present a divergence
map that vividly delineates four distinct regions characterized by
boundaries, indicating areas where the model encounters challenges
in terms of reconstruction. Even though the aggregate posterior
is highly concentrated at a few points, the negative divergence
almost everywhere suggests that the extent of the decoder can
handle extends well beyond the posterior, confirming the model’s
robustness and capability to manage a broader latent space. This
is visually evidenced by the divergence plot, which, despite the
concentration of the posterior in certain regions, illustrates that most
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Figure 7: The mean curvature mean shows four high curvature spots 
corresponding to the four flows of the latent data manifold.
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Figure 8: Response matrix on the toy dataset. The sources
of vortexes are regions in the latent space where the encoder
tends to project the encoded trajectories.

of the latent space, depicted in blue, does indeed converge rather 
than diverge, aligning with expectations and indicating a robust 
model. This robustness and convergence throughout the latent space, 
even in areas not densely populated by the posterior, underscore 
the model’s stability and reliability in handling various data and 
generating consistent reconstructions, thereby enhancing its utility 
in practical applications and further research in generative models 
and anomaly detection.

Furthermore, we use the mean curvature map, highlighting re-
gions of the latent space where the input trajectories are projected. 
High curvature regions, plotted in yellow on Figure 7, indicated 
areas of the latent space that are densely populated with meaningful 
data.

In our endeavour to combine the insights provided by both 
mean curvature and divergence, utilizing a composite visualization 
emerged as a pivotal strategy to encapsulate the multifaceted in-
formation embedded within the latent space of generative models. 
Given that both the mean curvature and divergence maps are derived 
from the same foundational element, the response map, we leveraged 
its grid of 2D vectors to craft a composite visualization that 
succinctly conveys the nuanced characteristics of the latent space.
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Figure 9: Response matrix on the Zurich dataset. Three di-
mensions show high responses with noticeable causal scores.

This approach was underpinned by extracting the principal sources 
of curve and curl from the response map, thereby illuminating the 
regions of high curvature and divergence within the latent space. 
Furthermore, we employed a strategic colour-coding scheme within 
the composite visualization to elucidate the various features of 
the response map, ensuring that each aspect, from areas of high 
divergence to regions of pronounced curvature, was distinctly and 
intuitively represented. Consequently, this composite visualization 
not only served as a coherent representation of the latent space 
but also facilitated a more holistic understanding of how the latent 
variables and their respective manifolds interact and evolve, thereby 
providing a unified view that seamlessly blends the insights offered 
by both the mean curvature and divergence maps into a single, 
comprehensive plot.

B. Trajectories landing at Zurich airport
In the investigative exploration of the Zurich dataset, character-

ized by two flows, a VAE is employed to elucidate the inherent latent
structures and interrelationships embedded within the data. In this
experiment, we use four input features to describe the trajectories,
namely track angle, ground speed, altitude and time. As illustrated in
Figure 9, the response matrix unveils that three dimensions manifest
a pronounced latent response, indicating their pivotal role in encap-
sulating important information about the dataset. The utilization of
a greater number of dimensions, in comparison to the toy dataset,
is attributed to the relatively augmented complexity of the Zurich
dataset. Furthermore, these dimensions register elevated causality
scores, thereby underscoring the existence of complex and poten-
tially non-linear relationships within the latent space of the Zurich
dataset. Although we set aside most complex procedures from this
dataset, there still is a big variation in the trajectories reflexed by the
presence of multiple data curvature "peaks" highlighted in yellow
on the figure 10. The features extracted within the latent space of
this network may represent the different approaches present in the
dataset.

Figure 11 presents a composite plot that utilizes colours to
visually represent the areas in the latent space where our model
encounters challenges regarding accurate and stable reconstructions.
A detailed examination of this plot allows us to identify boundaries
and regions exhibiting varying degrees of divergence. This analysis
provides valuable insights into the stability and robustness of the
latent representations learned by our model, as well as its generative
capabilities within the context of a Variational Autoencoder (VAE).
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Figure 10: Mean curvature plot on the Zurich dataset. Two
paths are shown: A direct path that crosses through a low
curvature region and an optimized path that goes through high
curvature regions corresponding to more realistic trajectories.

In Figure 10, we explore two distinct paths through the latent 
space, each resulting in interpolated aircraft trajectories. Our focus 
here is on how these paths adhere to regions with differing mean 
curvature. The first p ath, c haracterized b y a  s traight trajectory, 
represents the most direct route between two points in the latent 
space. However, it passes through areas with notably low curvature, 
suggesting that it traverses regions that lack dense data representa-
tion. Consequently, the aircraft trajectories reconstructed along this 
direct path may exhibit less realism and fail to conform to expected 
physical and operational constraints. This is because the path does 
not fully engage with the underlying data manifold within the latent 
space.

In contrast, the second path is specifically optimized to align with 
regions of high curvature. As a result, it inherently adheres more 
closely to the data manifold, navigating through areas in the latent 
space that are more likely to correspond to realistic and semantically 
meaningful data. This path’s alignment with high curvature points 
ensures that the interpolated points and subsequently reconstructed 
aircraft trajectories are more likely to exhibit realism and align with 
observed data dynamics. Therefore, the disparity in the realism and 
reliability of the reconstructed trajectories from these two paths 
underscores the critical importance of considering the intrinsic 
geometry and curvature of the latent space in the generation and 
interpolation tasks within generative models.

VI. CONCLUSION AND FUTURE WORKS

This paper applied a technique introduced in [27] for providing 
detailed visualizations, with a special focus on exploring its latent 
space. Divergence plots and multifaceted composite plots outline 
areas where the model shows an inability to accurately reconstruct 
trajectories, leading to the appearance of gaps and irregularities 
within the latent space.

The mean curvature map provides a more practical mechanism 
for interpolating between trajectories, by optimizing a path across 
regions with high curvature, thereby ensuring a constant presence in 
areas where the data manifold is notably prevalent. These optimized 
paths enable the creation of realistic trajectories, which can prove 
useful when working on designing new procedures, assessing col-
lision risk probabilities, or other events. This work not only offers 
insights into the reliability of autoencoders but also advocates an 
improved methodological approach for exploring and understanding
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Figure 11: Composite visualization on the Zurich dataset.

their latent spaces, and paving the way for an improved acceptability 
by operational stakeholders.

The long-term objective of such an approach is to provide 
explainable ML models for anomaly detection: a good understanding 
of the structure of the latent space with existing and more advanced 
tools is expected to help to provide models able to give operational 
hints about detected anomalies based on the structure of the local 
neighbourhood in the latent space, thereby bridging the gap toward 
more explainable AI in the air traffic management domain.
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