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Abstract—All aviation stakeholders require accurate estimated
times of arrival in order to run flight operations as efficiently
as possible. The time of arrival, however, is difficult to predict
because it is affected by the uncertainties of the previous flight
phases, with take-off time variability being the most significant
contributor. At present, estimated time of arrival predictions are
computed by the Enhanced Traffic Flow Management System,
which collects data from a variety of sources to provide the best
estimate throughout the entire duration of the flight. This paper
introduces a novel approach that leverages existing machine
learning models to enhance the accuracy of estimated time of
arrival predictions, also during the pre-departure phase. More
specifically, the first model (FADE) forecasts the evolution of
air traffic flow management delays for regulated flights; the
second model (KNOCK-ON) anticipates rotational reactionary
delays arising from unrealistic available turn-around times; and
the third model was trained to identify systematic discrepancies
between reported and actual airborne times. Using a dataset
comprised of historical traffic and meteorological data collected
from March to June 2023, this paper presents a comprehensive
evaluation of this ensemble of models, referred to as PETA,
against the current predictions across various time horizons,
ranging from 6 hours before departure to the moment of take-
off. The results indicate that the proposed solution surpasses the
existing system in approximately two-thirds of the predictions.
When the proposed solution performs better, the average and
median improvements are 14 minutes and 7 minutes respectively.
However, when it underperforms, the average and median dete-
riorations are 7 minutes and 4 minutes respectively.

Index Terms—machine learning; flight predictability; esti-
mated time of arrival

I. INTRODUCTION

Estimated time of arrival (ETA) prediction is an important
yet challenging issue for the aviation sector. The ETA is
important for all aviation stakeholders because it serves as
a trigger/input for several air traffic management (ATM) pro-
cesses throughout the flight. Airlines, airports, air navigation
service providers (ANSPs), and the Network Manager (NM)
all require accurate ETAs to run flight operations as efficiently
as possible. The earlier that data or forecasts are available, the
better one can plan ahead. At present, ETA predictions are
offered to all stakeholders through the Enhanced Traffic Flow
Management System (ETFMS). These predictions, however,
remain subject to various uncertainties throughout different
flight states due to factors such as air traffic flow manage-
ment (ATFM) measures, weather conditions, air traffic control
(ATC) practices, computer assisted slot allocation (CASA)
system and runway usage, for instance.

Fig. 1 illustrates the main factors affecting ETA predictions.

Figure 1: Flight states (green), events (orange), processes (grey) and sources
of uncertainty within a process (italic).

In addition, it is presupposed that the prediction of ETA
becomes increasingly uncertain the farther the flight is from
its actual time of arrival (ATA). Therefore, the development
and availability of enhanced ETA predictions, in comparison
to ETFMS estimations, across various look ahead times, would
assist stakeholders in operating more efficiently, improving
planning, enhancing predictability, and increasing punctuality.

The results of a data exploratory analysis using current
ETFMS predictions revealed that most of the ETA prediction
error is due to uncertainty in take-off time. In a point of fact,
right after take-off, the ETA prediction (which at that moment
corresponds to the airborne time prediction) error follows a
Gaussian distribution with a median of approximately 0 min
and a relatively low (though not insignificant) dispersion.

Significant efforts have been made in recent years to im-
prove ETA predictions, particularly within the academic and
research communities. These efforts have resulted in a plethora
of models, most of which are based on machine learning.



The primary focus of these models, however, has been on
predicting airborne time, frequently overlooking an important
aspect that heavily contributes to the negative operational
impact of ETA uncertainty: the variability in take-off times.

Several projects under the EUROCONTROL Air Transport
Innovation Network (EATIN) framework1, including curfew
collaborative management [1] and the forecast of ATFM
delay evolution (FADE) [2], have made advancements in the
prediction of off-block times, and consequently, take-off times.

These models, when combined with a machine learning
model aimed at mitigating the aforementioned residual errors
in airborne time predictions, could serve as fundamental
building blocks for the development of an advanced and data-
driven ETA prediction system applicable from the time the
flight plan is submitted, several hours before take-off.

The contribution of this paper is twofold. Firstly, it presents
the so-called prediction of ETA (PETA) algorithm, which
leverages existing machine learning models to improve the
ETA predictions. Secondly, it provides a detailed performance
evaluation of PETA’s predictions by comparing them to the
predictions of the current system (i.e., the ETFMS), con-
ducted over a recent three-month period encompassing all
intra-European Civil Aviation Conference (ECAC) flights. The
evaluation focuses primarily on ETA predictions prior to take-
off, as early as 6 h in advance, when uncertainty is at its peak.

Following a state-of-the-art assessment detailing motiva-
tions and current situation, the paper describes the methodol-
ogy and then presents the results and discussion/perspectives.

II. STATE-OF-THE-ART

A. Definitions and assumptions

In ATM terminology, the time of arrival refers to the landing
(or touchdown) time, whereas the in-block time refers to the
event when the aircraft arrives at the parking position and the
parking brakes are activated2. Thus, for the remainder of this
document, ETA will refer to the estimated landing time.

Various sources of data are available for stakeholders
to calculate ETAs according to their specific needs (e.g.,
advanced-surface movement guidance and control system for
tower/airport, correlated position report). These ETAs serve a
variety of functions depending on who owns them. It should be
noted, however, that the most accurate (among many) ETA at a
specific flight phase is not always shared with all stakeholders,
which can prevent the ATM community from fully capitalising
on its accuracy. As a result, the focus of this study and the
developed models is primarily on improving the ETFMS ETA
predictions to make them universally accessible.

B. Motivation

Overall, the ETAs are used by aviation stakeholders to plan
and optimise their operations according to their needs: from
the airline’s perspective, both flight operating centre and airline
operating centre need ETAs for overall ground operations,

1https://www.eurocontrol.int/project/eatin
2It is worth noting that the in-block time can be calculated by adding the

taxi time to the landing time.

which include aspects such as stand or gate utilisation, ground
handling, and staff planning. Furthermore, improved ETA
predictions would not only allow for more efficient passenger
connections, but would also increase customer satisfaction.
From the airports’ perspective, inbound ETA is used as a
trigger to the airport collaborative decision making (A-CDM)
process to optimise flow of passengers and luggage, and for
the use of airport resources (e.g., runways, taxiways, gates)
and ground services (e.g., ground transportation).

Last but not least, from the ANSPs’ perspective, accurate
ETA predictions would allow smoother and more efficient ar-
rival delay/traffic management. For instance, it would allow the
better planning of arrival traffic, thus reducing or even avoiding
arrival bunching in the extended / terminal manoeuvring area
(ETMA/TMA) that cause extra delays and fuel consumption
(e.g., from holding patterns, level-offs, vectoring).

C. Current situation

To gain insight into the current situation, a comprehen-
sive analysis of the ETFMS ETA predictive accuracy was
conducted. This analysis encompassed 6 months of flight
data from the 50 busiest airports in ECAC, spanning from
January to March and June to August, 2022. The dataset
comprised approximately 2M intra-ECAC flights monitored
by the ETFMS. The ETA prediction error of each flight was
computed as the difference between the actual time of arrival
(ATA) and the ETA as reported by the ETFMS. Therefore,
positive values indicate that the ETFMS prediction was overly
optimistic, meaning the flight arrived later than the predicted
ETA (i.e., positive → delay). The computation was made at
two specific and representative events of the flight:

1) at the submission of the initial flight plan (IFP), typically
between 3 and 9 h before take-off, and

2) at first system activation (FSA), i.e., when the first ATC
message is received, typically right after take-off.

Figure 2a shows that the ETA prediction is more accurate
and with less dispersion at FSA (median is 0, with 50% of
values within the [-4, 4] min range), when compared to the
same values at IFP (median is 6 min, with 90% of values
within the [-5, 23] min range). These results highlight that
the prediction of the airborne time (used as ETA prediction at
FSA) is relatively accurate and that most of the current ETA
prediction error is attributable to the take-off time uncertainty.

To further assess the possible cause of ETA uncertainties,
Fig. 2b shows the ETA prediction error values as a function of
the maximum ATFM delay assigned to the flight (if applicable,
otherwise set to 0) from IFP to FSA. Results indicate that, as
expected, the ETA prediction error at FSA is independent from
the maximum ATFM delay. Figure 2b also shows, however,
that the maximum ATFM delay value has an impact on the
ETA prediction error at IFP. The trend exhibits a decrease
below 0 as the maximum delay increases, indicating that the
prediction of the current system was overly pessimistic. These
findings align with expectations, as the ATFM delay typically
decreases due to the true revision process of CASA.
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(a) ETA prediction error distribution (b) Correlation between ETA prediction error and maximum ATFM delay

Figure 2: Results of the analysis with current ETA predictions at IFP and FSA events.

In summary, the most significant part of the current ETA
prediction errors originates from take-off uncertainties. Air-
borne uncertainties, though not insignificant, tend to be low.

D. Literature review
The ETA prediction problem has drawn the attention of

many researchers in the recent years. A multitude of models
have been developed, with the majority relying on machine
learning techniques and encompassing diverse types of data
(e.g., flight information, weather, surveillance data for tra-
jectory clustering), as well as various designs (e.g., artificial
neural networks and gradient-boosted decision trees) [3]–[7].
In this regard, the performance of several machine learning
models has also been assessed and compared [8], [9]. Recently,
researchers proposed novel methods for accurately predicting
ETAs in Beijing TMA [10] and for a multi-airport system [11].
Specifically, the authors exploited spatio-temporal features
based on clustering analysis of trajectory patterns, drawing
on methodologies proposed in the previous research.

While demonstrating outstanding predictive capabilities,
these studies primarily focused on addressing the ETA predic-
tion challenge in the context of airborne time, that is, without
considering uncertainties related to take-off times. Filling
this gap, EUROCONTROL developed two machine learning
models to improve ground delay predictions: (1) the so-
called KNOCK-ON model, which predicts the reactionary delay
for non-regulated flights, and (2) FADE, which predicts the
evolution of the ATFM delay for regulated flights [2]. KNOCK-
ON and FADE, combined with a third machine learning model
that tackles the airborne time prediction problem, are the three
building blocks of the PETA system that follows.

III. METHODOLOGY

The general PETA system comprises the integration of
several machine learning models, each specialising in pre-

dicting the duration of a specific process (as illustrated in
Figure 3). At the time of writing this document, however, the
model specialised in predicting the taxi-out time was not yet
available, and ETFMS predictions were used instead.

The decision to utilise machine learning over traditional
methods in this study is motivated by the complexity of the
problem and the extensive amount of data collected by NM.
This data was instrumental in training effective models.

Figure 3: PETA: combination of models to predict the ETA.

A. Individual models
The three models that constitute PETA are based on

gradient-boosted decision trees, specifically the LightGBM
implementation by Microsoft. Several factors influenced the
choice of this type of model: (1) they are simple to train,
(2) they can handle high-cardinality variables like airports or
airlines, (3) they are robust to missing values, and (4) they
consistently perform well with tabular datasets.

First, the KNOCK-ON model predicts the rotational reac-
tionary delay by taking various factors into account. These
include the available turn-around time (ATT), specific flight
attributes such as departure and destination airports, and
the aircraft operator, as well as essential calendar features.
Furthermore, the model takes into account the weather forecast
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associated with the estimated off-block time (EOBT) at the
departure airport. The primary goal of this model is to improve
off-block time predictions for non-regulated flights.

Second, the primary goal of FADE is to predict the final
ATFM delay (DLY), right before departure, of a regulated
flight. It should be noted that FADE does not predict which
flights are going to be regulated, but just the expected delay
of already regulated flights. In other words, a flight needs to
be regulated to benefit from FADE predictions.

Similar to the KNOCK-ON model, its predictions are con-
ditioned on several flight attributes, including the departure
and destination airports. FADE also considers the current
ATFM delay and the parameters of the ATFM regulation that
determines the delay (i.e., the most penalising regulation),
including the reference location, its reason and the duration.

Third, the AIRBORNETIME model was developed from
scratch with the goal of improving airborne time predictions.
This entails estimating the time it will take from take-off to
landing. The AIRBORNETIME model considers a variety of
flight attributes, such as origin and destination airports, aircraft
operator, and tactical flight data, as well as factors such as de-
parture delay and ATT for the subsequent rotation operated by
the same aircraft registration. Analogously to the KNOCK-ON
model, it includes calendar-related features and considers the
expected weather conditions at the destination airport around
the ETA. The underlying hypothesis here is that these various
features can collectively contribute to identifying systematic
shortcuts along the route, airline-specific time buffers and
speed adjustments to compensate for delays or save fuel, and
additional airborne time required in the destination airport’s
TMA due to traffic congestion and/or adverse weather.

B. PETA: combined models

The idea behind the PETA system is illustrated in Algo-
rithm 1. Lines 13-15 show how KNOCK-ON and FADE are
combined to predict the departure delay (PDLY). This doublet
of models is expected to provide more accurate off-block
time predictions (POBT) for both regulated and non-regulated
flights. Thereafter, the predicted take-off time (PTOT) is
obtained by adding the taxi-out time (TXOT) as reported by
the ETFMS. Finally, the airborne time as predicted by the
AIRBORNETIME model is added to the PTOT, resulting in the
PETA. The PETA is used to estimate the ATT of the next
flight in the sequence, and the process is repeated. It is worth
noting that, in contrast to standard ATM notation, and due to
the absence of readily available taxi-in information, the ATT
used by the KNOCK-ON was defined as the difference between
EOBT and the time of arrival of the previous flight, not the in-
block time. This implies that KNOCK-ON implicitly predicts
the taxi-in time from the information provided in the inputs.

C. Data and training

The three machine learning models were trained using
ETFMS flight data messages (EFDs) and meteorological aero-
drome reports (METARs) to form the dataset, encompassing
data from January 1st, 2022, to February 28th, 2023. The raw

Algorithm 1 PETA: propagates predictions along flights op-
erated by the same aircraft registration r to improve ETAs.

1: M← Latest message of all flights operated by r
2: M← Remove cancelled flights from M
3: f ← Sequence of flights operated by r, sorted by EOBT
4: for i = 1, . . . , |f | do
5: if f(i) is a terminated flight then
6: PETA(i)← ATA(i)
7: else
8: if f(i) has departed then
9: POBT(i)← AOBT(i)

10: PDLY← AOBT(i)− EOBT(i)
11: else
12: ATT← EOBT(i)− PETA(i− 1)
13: PDLY← KNOCK-ON(ATT, ...)
14: if f(i) is regulated then
15: PDLY← max (PDLY, FADE (DLY(i), ...))
16: end if
17: POBT(i)← EOBT(i) + PDLY
18: end if
19: PTOT(i)← POBT(i) + TXOT(i)
20: PETA(i)← PTOT(i) + AIRBORNETIME(PDLY, ...)
21: end if
22: end for

(textual) METARs were processed with the open-source li-
brary metafora (https://github.com/ramondalmau/metafora).

IV. RESULTS

This section presents the outcomes of an evaluation un-
dertaken using historical flight and meteorological data. The
dataset used to assess performance spans the period from
March 1st to June 30th, 2023, and it includes all intra-ECAC
flights operated by aircraft listed in the base of aircraft data,
which accounts for 95% of all aircraft types. Each observation
in this dataset corresponds to an EFD message sent by a flight.

EFD messages are triggered, for example, when the CASA-
assigned ATFM delay changes, when the airspace user updates
the flight’s route, and when a departure planning information
(DPI) message is sent when departing from a CDM airport.
Consequently, the reader should keep in mind that the dataset
contains more observations than flights.

Section IV-A provides an overview of the performance
metrics for the individual models, each predicting its respective
target independently. Section IV-B, on the other hand, delves
into the collective performance of the PETA system.

The performance assessment presented in Section IV-A
assumes perfect knowledge of weather conditions at the de-
parture and destination airports, i.e., the closest METAR to
EOBT and ETA. In contrast, in order to ensure a realistic
assessment of the PETA performance in future operations,
the performance assessment presented in Section IV-B only
considers information available at the prediction time while
applying the following rule: when the time difference between

4

https://github.com/ramondalmau/metafora


(a) Reactionary delay (b) ATFM delay (c) Airborne time

Figure 4: Empirical cumulative distribution function of the various prediction errors.

the predicted milestone and the prediction time is <3 h, the
latest METAR is used; otherwise, the latest TAF is considered.

A. Individual models

This section thoroughly examines the performance of each
of the three models in predicting their respective targets.

Figure 4 shows the (signed) cumulative prediction error
distribution of both current and machine learning models.
Complementing this figure, Table I presents the key metrics
of the absolute prediction error distribution for the machine
learning models in comparison to the current predictions. The
specific results will be discussed in their respective sections.

TABLE I: ABSOLUTE PREDICTION ERROR DISTRIBUTION METRICS
(MIN).

Output Reactionary delay ATFM delay Airborne time

Model Current KNOCK-ON Current FADE Current Airborne time

Mean 10.3 6.6 15.2 9.7 5.0 3.4
Std. 15.0 8.8 23.2 10.7 4.5 3.4
5th Perc. 6.0 4.4 0.0 0.0 4.0 2.6
25th Perc. 0.9 0.4 0.0 2.5 0.3 0.2
Median 3.0 2.0 8.0 6.7 1.9 1.2
75th Perc. 12.0 8.1 19.0 13.2 7.0 4.6
95th Perc. 34.0 18.6 56.0 30.6 13.6 9.3

1) KNOCK-ON: The prediction error of this model is
computed as the difference between the actual off-block time
(AOBT) and the POBT. Positive values indicate that the model
is overly optimistic, predicting less reactionary delay than what
actually occurred, whereas negative values indicate that the
flight departed earlier than expected.

The KNOCK-ON predictions are compared against the off-
block time as reported in the EFD. It is important to note that
the off-block time may undergo updates during the flight’s
course, often prompted by delay messages from the aircraft
operator. Similarly, for CDM airports, more precise off-block
time estimations can be provided in the form of target off-
block time (TOBT) or target start-up approval time (TSAT).
The current model takes in to account these updates.

In terms of absolute off-block time prediction error, Table I
shows that the KNOCK-ON model reduces the mean value by

roughly 30% (from 10.3 to 6.6 min). This reduction is also
visible in the remaining distribution metrics.

Figure 4a shows that, when compared to the current model,
the KNOCK-ON model consistently improves off-block time
predictions for non-regulated flights. This improvement is
mostly visible on the positive side of the distribution, indicat-
ing the KNOCK-ON model’s ability to anticipate reactionary
delays well before the aircraft operator updates the off-block
time information in the system with more realistic values.

The significant improvement observed can be attributed to
a critical distinction: the current model does not include the
minimum turn-around time when identifying overlapping con-
secutive flight plans operated by the same aircraft registration.
In practical terms, this could result in scenarios where the
arrival time of a flight aligns unrealistically closely with the
off-block time of the subsequent flight, operated by the same
aircraft registration, until the aircraft operator provides more
accurate timing information. The KNOCK-ON model, on the
other hand, excels at identifying these scenarios by leveraging
historical observations to learn about the minimum turn-around
time, which effectively becomes a latent variable of the model.
This figure also shows that, albeit to a lesser extent, the
KNOCK-ON model demonstrates the ability to identify flights
that systematically depart earlier than expected. This, in turn,
helps to mitigate the negative tail of the cumulative prediction
error distribution, diminishing overly pessimistic predictions.

2) FADE: The prediction error of this model is computed
as the difference between the actual ATFM delay right before
departure and the predicted one. Like the KNOCK-ON model,
positive values indicate that the model was overly optimistic,
predicting too much ATFM delay improvement, whereas neg-
ative values indicate that the flight departed with less ATFM
delay than that assigned by CASA at the prediction time. In
this case, the current model consists of using the current ATFM
delay assigned by CASA as the best prediction.

In terms of the absolute ATFM delay prediction error
distribution, as shown in Table I, FADE manages to reduce the
mean error by approximately 5.5 min (36%). It’s worth noting
that a large portion of this reduction is due to observations
on the negative side of the signed ATFM delay prediction
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error distribution, as discussed in the previous paragraph.
Furthermore, other key distribution metrics show significant
improvements, with a particular emphasis on the 95th per-
centile, which is reduced by 25.4 min (45%).

Figure 4b shows that FADE outperforms the current model
in the negative tail of the cumulative prediction error distri-
bution. This fact is consistent with expectations, given that
the ATFM delay assigned to flights is frequently reduced due
to the CASA algorithm’s optimisation efforts. CASA works
diligently to improve the ATFM slots of regulated flights,
ensuring that they depart as close to their EOBT as possible,
through the so-called true revision process. As a result, current
model’s predictions of ATFM delay are generally pessimistic,
particularly when made well ahead of the EOBT.

Figure 4b also highlights an important point: FADE faces
difficulties in determining whether the ATFM delay will
remain stable or increase. In these scenarios, the current
model outperforms FADE. This gap can be attributed to
FADE’s lack of network awareness, as it generates predictions
based solely on flight-specific information, without taking
into account other ATFM regulations present in the network
even if not directly affecting the flight. These unaccounted-
for regulations could potentially have a greater impact on
the flight, causing drastic changes in its delay. To effectively
address this issue, future work should focus on developing
a network-aware model for FADE. Such a model should be
capable of identifying situations in which the ATFM delay
remains unchanged or increases due to the complex interaction
between regulations, allowing for more accurate predictions.

3) AIRBORNETIME: To assess the predictive power of the
model, the prediction error can be calculated as the difference
between the actual airborne time and the predicted value.
Notably, unlike the previous models, positive values in this
context indicate that the model was overly optimistic, pre-
dicting a shorter duration than the actual flight time, whereas
negative values indicate that the flight completed its journey
in less time than anticipated. In the case of the current model,
the prediction is based on the difference between the EFD’s
ETA and estimated take-off time (ETOT) at prediction time.

The metrics presented in Table I, particularly the absolute
airborne time prediction error distribution, clearly show that
the improvement with respect to current values remains some-
what modest in absolute terms (measured in min). However,
it is important to note that the relative improvement is not
insignificant, amounting to approximately 30% when the MAE
is considered. Unlike FADE and the KNOCK-ON models,
which achieve significant reductions in MAE by several min,
the gains achieved by the airborne model are expected to
be more limited. These findings are further supported by the
results of the analysis presented in Section II-C, implying that
a significant portion of ETA uncertainty is caused by factors
prior to take-off. Notably, ETA predictions made by the current
system when the flight is already in flight or very close to
take-off are very accurate. As a result, there is little room for
improvement in such scenarios, and the majority of research
efforts aimed at improving ETA predictions should be directed

towards improving take-off time predictions.
Figure 4c shows that the AIRBORNETIME model is effective

at improving current predictions at both ends of the distribu-
tion, with the most notable improvements occurring on the
negative side. This finding indicates that the AIRBORNETIME
model succeeds at identifying flights that consistently com-
plete the journey in less time than current estimates. Such
deviations can occur as a result of a variety of factors such
as time buffers, speed adjustments, or ATC shortcuts, among
others. Furthermore, the minor improvement observed on the
positive side suggests that the airborne model has a greater
ability to identify flights that will spend more time in the
air than the current model originally predicted. This could be
attributed to factors such as bad weather or recurrent traffic
congestion at the destination airport.

B. PETA: combined models

The ETA predictions generated by the PETA system will
be juxtaposed with those of the current system under identical
conditions. It is important to highlight that, in the case of
regulated flights, the ETA provided by the current system
effectively takes into account the (current) ATFM delay.

The distribution of (signed) ETA prediction errors is de-
picted in Fig. 5. These errors are calculated as the actual time
of arrival (ATA) minus the predicted ETA, as in the previous
evaluations. As a result, positive values indicate unexpected
delays, while negative values indicate that the flight arrived at
the destination airport earlier than predicted.

The results are further enriched by Table II, which presents
various metrics related to the distribution of absolute ETA
prediction errors. Notably, in contrast to previous evaluations,
the results are grouped based on the time to EOBT.

Figure 5: Empirical cumulative distribution function of the ETA prediction
error.

Figure 5 closely aligns with the cumulative distributions
previously showcased for the individual models. Interestingly,
a substantial portion of the overall improvement can be
attributed to FADE’s capability to forecast regulated flights
for which the ATFM delay is expected to decrease in the
near future. This particularly benefits the negative side of the
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TABLE II: ABSOLUTE ETA PREDICTION ERROR DISTRIBUTION METRICS (MIN) GROUPED BY TIME TO EOBT.

Metric Mean Std. 25th Perc. Median 75th Perc.

Model Current PETA Current PETA Current PETA Current PETA Current PETA

≤30 min 14.5 12.1 21.5 20.0 3.9 3.0 8.5 6.7 16.9 13.7
(30 min, 1 h] 15.9 12.7 21.7 19.7 4.3 3.4 9.8 7.6 19.2 14.8
(1 h, 2 h] 19.2 14.3 24.7 20.1 5.0 4.0 11.7 8.8 24.0 17.2
(2 h, 4 h] 26.2 17.6 32.9 22.8 7.0 5.1 16.0 11.2 33.0 21.7
(4 h, 6 h] 30.4 19.9 37.6 25.1 7.6 5.7 18.0 12.7 39.0 24.7
>6 h 23.1 19.6 29.3 26.9 5.7 5.1 13.0 11.5 28.8 23.5

signed ETA prediction error distribution. The reader should
keep in mind that accurate predictions have a cascading effect,
positively influencing predictions for subsequent flights in
the sequence, thereby amplifying the overall improvement
in ETA predictions. Additionally, the shortcomings observed
in FADE’s performance on the positive side of the ATFM
delay prediction error distribution are partially offset by the
advantages offered by the KNOCK-ON model in that region.
Specifically, the KNOCK-ON model excels in predicting flights
with delayed departures resulting from rotational reactionary
delays, thereby contributing to a more balanced performance.

Table II demonstrates that an ensemble of machine learning
models working collaboratively to improve ETA predictions
consistently outperforms existing predictions across different
look-ahead times. This observation holds particular signifi-
cance within the look-ahead times ranging from 2 to 6 h before
the EOBT. As one approaches EOBT, existing predictions
tend to be already quite accurate, leaving limited room for
improvement. Conversely, when further away from EOBT, the
information feeding into the machine learning models becomes
more uncertain, consequently affecting the predictions made
by the ensemble. It is crucial to bear in mind that, just
as accurate predictions have a cascading positive effect on
performance, any inaccuracies (e.g., stemming from unreliable
input data far from EOBT) can have a detrimental impact on
overall performance. These findings suggest that the proposed
ensemble could provide the most significant operational ben-
efits between 2 and 6 h before EOBT, and that its usage may
not be beneficial outside of this time frame.

Finally, Fig. 6 shows the histogram of differences in ab-
solute ETA prediction error between the current system and
PETA. Each observation in this histogram corresponds to
one prediction, and the associated value was computed as
ABS(ATA – Current system’s ETA) - ABS(ATA – PETA).
Accordingly, the positive side of the distribution includes
the observations in which PETA was better than the current
system, in absolute terms, whereas the negative side contains
cases in which PETA was worse than the current system.

According to this figure, PETA outperformed the current
system in roughly two thirds or the predictions.

Figure 7 presents the same values (absolute ETA prediction
error difference between the current system and PETA) but
shows the average error for the top 50 airports with most
intra ECAC arrivals. This figure shows that, on average, PETA
provided more accurate ETA predictions than the current

Figure 6: Histogram of the differences between the current and PETA absolute
ETA prediction errors. For completeness, the mean and median absolute values
of both the blue and red distributions are also included.

system for all considered airports, ranging from 2 min better
for Catania airport (LICC) to 13 min better for Alicante airport
(LEAL). More detailed analysis is required to understand the
large differences between airports. As an example, a relatively
high percentage of regulated flights for a given destination
airport might positively impact the PETA predictions, allowing
FADE to improve upon the current system’s predictions.

The performance of the PETA ensemble, presented in this
section, is a cumulative result of the contributions from three
distinct models. An initial analysis, which involved selectively
deactivating individual models within the ensemble to as-
sess their marginal contribution on the overall performance,
revealed that KNOCK-ON and FADE are the primary con-
tributors to PETA’s performance. Interestingly, their relative
contributions are situation-dependent: on days with a high
volume of ATFM regulations, FADE takes precedence, while
on regular days, KNOCK-ON proves to be more important.

Finally, it is important to note that the three PETA models
operate in a cascading fashion and along a flight sequence.
This means that any incorrect prediction of one model may
have negative consequences for subsequent predictions (for
the same or next flights). The sensitivity of each model to
errors in their inputs, which should not be confounded with
the marginal contribution discussed in the previous paragraph,
remains unquantified. This will be the focus of future research.
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Figure 7: Differences between the current and PETA absolute ETA prediction errors per airport. (Each circle is an airport with its size proportional to the
number of arrivals considered.)

V. CONCLUSIONS

Results have shown that PETA’s ETA predictions are better
(have a smaller absolute error) than the current system’s ETA
predictions for about two thirds of the flights in the test
set. The current system is better for the remaining third of
flights. When PETA performs better, the average and median
improvements are 14 minutes and 7 minutes respectively.
However, when it underperforms, the average and median
deteriorations are 7 minutes and 4 minutes respectively.

As of now, we are conducting an investigation to understand
why the current system occasionally produces superior pre-
dictions. The insights gained from this study may contribute
to future enhancements in PETA. Our approach involves a
detailed examination of extreme discrepancies, both positive
and negative, to deepen our understanding and refine the
model. Still, PETA gives more accurate predictions on average
at different lookahead times in the six time-bins we considered
prior to departure. Additionally, PETA’s improvements over
the current system are generally more substantial than the
current system’s improvements over PETA (as evidenced by
the longer tail for PETA’s improvements in Fig. 6).

The latest version of PETA takes predicted taxi times from
ETFMS. If these predictions could be improved with a dedi-
cated model, PETA’s ETA predictions could be improved fur-
ther. The TITOP project within the EUROCONTROL EATIN
framework has, in fact, started to develop models for taxi

times for a selection of the busiest ECAC airports. A future
development could be to incorporate TITOP into PETA. The
potential performance improvement, however, is still unknown.

Looking at individual model results, the absolute prediction
error of the current system (according to its target) is largest
for ATFM delay, then for reactionary delay then for airborne
time (see Table I). Given that the KNOCK-ON, FADE and
AIRBORNETIME models each show an approximate improve-
ment over the current system of 30%, this suggests that the
most beneficial component of PETA could be FADE, then
KNOCK-ON, then finally the AIRBORNETIMEairborne time
model. In principle, we would expect PETA’s performance
to be best when it uses all three models. However, this
has to be confirmed by a comprehensive analysing marginal
contributions of each model on overall PETA predictions, the
three models not being independent.

The EATIN programme is focused on delivering relatively
quick-return operational benefits to users. The next significant
step is to make PETA available to a small number of users
through an informal live trial, which will be achieved by
providing an API for authorised users to access PETA on
EUROCONTROL’s Cloudera development platform. The TAF
is one of the inputs to PETA for creating weather features.
PETA can make an ETA prediction for a flight without a TAF,
but the API will allow users to provide their own raw TAFs
if they wish. Analysis has shown that the accuracy of PETA’s
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ETA predictions is reduced if no TAF is provided, but the
reduction in accuracy (in terms of mean absolute error) is in
the tenths of min, so is of minor significance.

An issue that has not yet been addressed is how to assess the
operational benefit of PETA in the live atrial and beyond. This
paper shows significant average performance improvement
over the current system, yet how does this translate into
operational benefit? Given there will be a financial cost to
users to implement PETA in their operational systems, will
the implementation costs for users be sufficiently outweighed
by the cost-savings delivered by PETA? One possible approach
would be to monetize the error (accuracy) of ETA predictions,
but this is a large project and falls outside of the scope of the
current work!

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are confi-
dential and not publicly available due to privacy restrictions.
Therefore, they cannot be shared for reproducibility purposes.

ACKNOWLEDGEMENTS

This study was proposed by Austrian & ANS CR for the 5th

EUROCONTROL Air Transport Innovation Network (EATIN)
cycle in December 2022. The project caught the attention of
partners that expressed their interest and joined the project. It
includes the following partners:

• Airports: Brussels, Prague, Heathrow;
• Airspace Users: Swiss, KLM, Austrian, TAP;
• ANSPs: NATS, ANS CR.

REFERENCES

[1] R. Dalmau, G. Murgese, Y. De Wandeler, R. Correia, and A. Marsden,
“Early Detection of Night Curfew Infringements by Delay Propagation
with Neural Networks,” in 14th USA Europe Air Traffic Management
Research and Development Seminar, (Virtual Event), 2021.

[2] R. Dalmau, B. Genestier, C. Anoraud, P. Choroba, and D. Smith, “A
Machine Learning Approach to Predict the Evolution of Air Traffic
Flow Management Delay,” in 14th USA Europe Air Traffic Management
Research and Development Seminar, (Virtual Event), 2021.

[3] C. Strottmann Kern, I. P. de Medeiros, and T. Yoneyama, “Data-driven
aircraft estimated time of arrival prediction,” in 2015 Annual IEEE
Systems Conference (SysCon) Proceedings, (Vancouver, BC), pp. 727–
733, 2015.

[4] S. Ayhan, P. Costas, and H. Samet, “Predicting Estimated Time of
Arrival for Commercial Flights,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, (New York, NY), pp. 33–42, 2018.

[5] Z. Wang, M. Liang, and D. Delahaye, “Automated data-driven predic-
tion on aircraft Estimated Time of Arrival,” Journal of Air Transport
Management, vol. 88, p. 101840, 2020.

[6] G. Wang, K. Liu, H. Chen, Y. Wang, and Q. Zhao, “A High-precision
Method of Flight Arrival Time Estimation based on XGBoost,” in
2020 IEEE 2nd International Conference on Civil Aviation Safety and
Information Technology (ICCASIT, (Weihai, China), pp. 883–888, 2020.

[7] R. Christien, B. Favennec, P. Pasutto, A. Trzmiel, J. Weiss, and
K. Zeghal, “Predicting arrival delays in the terminal area five hours
in advance with machine learning,” in 14th USA Europe Air Traffic
Management Research and Development Seminar, (Virtual Event), 2021.

[8] J. Silvestre, M. de Santiago, A. Bregon, M. A. Martı́nez-Prieto, and
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