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Abstract—A digital tower offers a cost-efficient substitute
for traditional air traffic control towers and is anticipated to
deliver video-based surveillance, which is especially beneficial for
smaller airports. To fully unlock the potential of digital tower,
sophisticated computer vision algorithms are pivotal for efficient
surveillance. While current research predominantly concentrates
on tracking aircraft movements on the airport surface, an equally
crucial aspect lies in real-time monitoring of aircraft as they are
are on finals. This capability plays a central role in enhancing
both airport and runway operations. In this context, this study
introduces a deep learning approach for precise estimation of
the position of incoming aircraft, covering distances of up to
10 nautical miles. This approach surpasses the constraints of
monoscopic techniques by leveraging multi-view video feeds ob-
tained from digital towers. It combines Yolov7, an advanced real-
time object detection model, with auxiliary regression and auto-
calibration, allowing real-time tracking and feature extraction
from different camera viewpoints. Furthermore, we propose an
ensemble approach utilizing an Long Short-Term Memory model
to combine input vectors, resulting in precise location estimation.
Importantly, this method is designed to seamlessly adapt to
different camera setups within digital towers. Its performance
is evaluated using simulated video data from Singapore Changi
Airport, showcasing stability in various scenarios with minimal
predictive errors (Mean Absolute Percentage Error = 0.2%) over
a 10 nautical mile range in clear weather conditions. These
capabilities, when implemented in a digital tower setting, have
the potential to significantly improve the controller’s capacity
to coordinate runway sequencing and final approach spacing,
ultimately enhancing airport efficiency and safety remarkably.

Keywords—Video-based surveillance; Computer vision; Multi-
view video feeds; Location prediction.

I. INTRODUCTION

Digital towers have emerged as a promising solution for
replacing physical towers in small and medium-sized airports,
and they are also being incorporated into the development
of larger airports as digital twins in conjunction with their
physical counterparts. Internationally, airports like London
Heathrow and Budapest Ferenc Liszt Airport have adopted
digital and remote tower systems, while Changi Airport is cur-
rently conducting trials for its Smart Digital Tower, exploring
the benefits for enhanced safety and operational support as
the airport expands [1]–[6]. These digital towers rely on video
data captured by an array of cameras, which are expected to

provide surveillance capabilities for airports without expensive
radar systems and enhance their performance in terms of safety
and efficiency. To fully provide these capabilities, a suite of
computer vision techniques must be developed to leverage
video streams for deriving decision-making information.

Recent years have seen a growing body of academic re-
search focused on the application of computer vision algo-
rithms in airport environments. These studies have explored
a range of aspects, including aircraft tracking, airport surface
surveillance [7]–[10], monitoring apron activities and aircraft
turnaround processes [11], [12], and enhancing airport safety
through debris and drone detection [13]–[15]. Notably, de-
spite significant investigations in these areas, there remains
a research gap in extracting aircraft location, particularly
while tracking approaching aircraft, which can appear as small
moving objects against featureless blue skies. The integration
of such estimation capabilities within a Digital Tower environ-
ment has the potential to greatly improve runway controllers’
sequencing and final approach spacing abilities.

Machine learning is increasingly used to track moving
objects, employing two main methods in computer vision:
monoscopic and stereoscopic. Monoscopic methods use a
single camera for location estimation, employing object detec-
tion to identify objects using bounding boxes. This approach,
supported by advanced algorithms like You Only Look Once
(YOLO), has achieved a vision range of up to 1000m with
different monocular cameras [16]. Another framework, Depth-
Net [17] estimated depth and detect objects from a single
image, but faced challenges while detecting small objects
(like approaching aircraft) and identifying crucial reference
markers for long-distance estimation. Stereoscopic methods
use multiple cameras to capture video, estimating location by
comparing object or pixel disparities between these cameras.
For example, [16] combined YOLO with stereoscopy for
distance estimation. These methods work well with nearby sta-
tionary objects but face challenges in calibrating and aligning
cameras, resulting in errors for distant objects [16].

Research studies on multi-camera approaches for vehicle
tracking and speed estimation [18] have revealed the benefits
of using multiple cameras for location estimation. Recently,



Figure 1. Aircraft location estimation: Predicted (PRED) and Ground Truth (GT) coordinates (Latitude, Longitude) of an approaching aircraft in two camera
feeds within a digital tower context.

the study presented in [19] introduced a multi-view vision-
based deep learning approach for estimating the Distance-to-
touchdown of an approaching aircraft within a range of up to
10 nautical miles. Building upon the advancements outlined
in [19], the current work extends this approach to provide real-
time estimations of the WGS 84 (Earth-centered) coordinates
(latitude and longitude) of approaching aircraft. This paper
aims to contribute by proposing an approach that leverages
multi-camera video feeds to ensure precise location prediction.
Our approach introduces a model architecture that incorporates
sequential layers and calibration to ensure stable performance
and robustness against factors like noisy input and errors in
object detection algorithms, effectively handling the stochastic
nature of input video feeds. The model’s efficiency is further
boosted by leveraging a pre-trained object detection model and
auto-segmentation techniques, reducing data requirements and
training time while maintaining high accuracy in estimating
the aircraft location up to 10 nautical miles. In its evaluation
phase using simulated video data from Changi Airport (refer
Figure 1), the model showcases exceptional location prediction
accuracy.

II. THE PROPOSED APPROACH FOR AIRCRAFT LOCATION
ESTIMATION

The proposed approach is visually outlined in Figure 2. This
model comprises two key components: first, the extraction of
the final feature vector from each camera view, and second, the
ensemble component used for location estimation. This design
is specifically engineered to address operational challenges,
including situations where different airports have varying
numbers of camera views for runway operations, or when
there are potential alterations in the camera’s configuration,
such as changes in angle and zoom. In such scenarios, many
end-to-end computer vision models typically require retraining
or fine-tuning with new data to ensure consistent performance.

The model begins with the utilization of video feeds from
two camera views as its inputs. These video sequences are pro-
cessed through an auto-segmentation module to pinpoint the
potential aircraft’s position by employing an aircraft detection

model. This step involves cropping out redundant areas in the
video frames, eliminating unnecessary visual data and focusing
solely on the small, distant approaching aircraft, which is the
target of interest. Subsequently, the bounding boxes around the
detected aircraft are fed into fully-connected layers, referred
to as calibration networks, responsible for extracting the final
feature vectors. All calibration networks are also linked to an
auxiliary regression head to facilitate parameter training. This
calibration step is crucial for harmonizing inputs from different
camera views without necessitating manual system calibration.
The resultant feature vectors are then merged using an Long
Short-Term Memory (LSTM) model [20] in conjunction with
fully-connected layers to predict the aircraft location. This
sequential model effectively combines inputs from multiple
camera views to ensure system stability, particularly in sce-
narios where there might be aircraft detection errors in one
or more video feeds. Subsequent sections will delve into the
model’s architecture, implementation, and training in more
detail.

III. DATA COLLECTION

TABLE I. THE SELECTED VALUES OF SIMULATION PARAMETERS FOR DATA
GENERATION USING THE X-PLANE 11 FLIGHT SIMULATOR.

Simulation Parameter Selected Values
Airport Singapore Changi Airport

Runway 02L
Aircraft Model B737

Time of the day (5) 6:00, 8:00, 12:00, 17:00, 18:00
Weather condition (1) Clear

Initial positions Randomized with distance = 10NM
Number of Camera Views 2

Camera Resolution 1920 x 1280
Frame rate 30 FPS

In order to train the network effectively, it is essential to
collect a substantial dataset that includes various perspectives
of aircraft during their final approach. This dataset should have
a high resolution to enable the identification of aircraft at long
distances. Moreover, it should contain aircraft coordinates,
which will serve as data labels for both training and evaluation.
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Figure 2. Proposed aircraft coordinate estimation approach involves two key components: extracting final feature vectors from each camera view and an
ensemble for location estimation. It begins with processing video feeds for aircraft detection through an auto-segmentation module, followed by calibration
networks extracting feature vectors. Merging these vectors using an LSTM model and fully-connected layers ensures accurate location prediction, enhancing
system stability in scenarios with potential detection errors.

To meet these criteria, we have chosen to utilize X-Plane 11 by
Laminar Research for data generation. To facilitate this data
collection process, we have developed a Python-based tool
that relies on the XPPython3 plugin [21]. This tool allows us
to capture video feeds from specified camera positions and
simultaneously record the aircraft’s precise locations. Refer
to Table I for a comprehensive overview of the controlled
parameters involved in our data collection procedure.

The dataset comprises videos pertaining to 25 different
scenarios, each depicting the corresponding 4D aircraft tra-
jectories. These scenarios are created using the B737 aircraft
model and the 3D model of Changi Airport, as illustrated in
Figure 3. To ensure consistency and because of its widespread
usage, we exclusively used the B737 aircraft model for data
generation in this research. The scenarios are set in clear
weather conditions with varying times of the day, and the
aircraft’s initial location is randomized to introduce diversity
in the aircraft’s landing positions while following the ILS
(Instrument Landing System) guidance. It’s worth noting that
each scenario’s trajectory spans approximately 10 nautical
miles (NM), while the corresponding videos have a duration
of around 4.0 minutes. These videos are recorded from two
distinct camera views positioned on both sides of runway 20C,
near its Instrument Landing System (ILS). It’s important to
highlight that, in the collected dataset used for training and
testing, visibility conditions are generally favorable, with most
scenarios having visibility exceeding 10 nautical miles.

IV. EXPERIMENTAL SETTING

In this study, the proposed model is trained and tested using
two camera views. In the training phase, 80% of the simulated
video data (equivalent to 20 scenarios) is utilized, while the
remaining 20% (5 scenarios) is reserved for testing. The data is
collected over five different times of day (refer Figure 4). Data
samples containing at least one detected aircraft are employed
for both training and evaluation purposes, resulting in a
total of approximately 124,000 data samples. Building on the

Figure 3. Illustration of an aircraft with its projected trajectory (side view)
and the corresponding vertical profile (top). At approximately 8 nautical miles,
the aircraft makes altitude adjustments before reaching the final approach fix,
resulting in increased errors in position estimation.

approach outlined in [19], the learning algorithm incorporates
YOLOv7 [22] as the aircraft detection model. Additionally, a
stacked LSTM model is developed to combine the extracted
information from all camera views. To optimize the model’s
inference speed, the TensortRT engine [23] is implemented
for video processing and aircraft detection steps, yielding a
significant processing speed increase of up to 300% compared
to the model without the TensortRT engine. Moreover, a set
of experiments was undertaken to assess various network
architectures. This led to the adoption of Linear([4, 128, 128,
256]) for the calibration network and [LSTM([256, 256], 2),
Inference/Linear([256, 2])] for the predictive model. The linear
network is denoted by a list comprising an input size, a list
specifying the sizes of hidden layers, and an output size. In
contrast, the LSTM network is represented by a list containing
an input size, the size of the hidden layer, and the number of
layers. Essentially, two types of networks were considered:
fully-connected layers or linear networks and stacked LSTM
layers.

We evaluate the model’s performance using five metrics.
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Figure 4. Different time (local Singapore time) of the day scenarios from simulated videos with different lighting conditions.

To understand the overall model performance during training,
we use Mean Absolute Percentage Error (MAPE). This metric
gives us an average measure of how well the model predicts
aircraft locations with training iterations. To evaluate the
trained model, we compute Latitude and Longitude Errors
(degrees), along track error (meters), cross track error (meters)
and euclidean distance (meters) between actual and predicted
aircraft location. These metrics help to evaluate how accurate
the trained model is across different aircraft distances from
touchdown. This project is implemented using PyTorch 1.13
with Python 3.10, and all the training is conducted on a single
RTX 3090 GPU. The model takes approximately 10 hours to
converge during the training process.

A. Aircraft Detection

The aircraft detection aims to localize the approaching
aircraft in the video frame and determine its corresponding
bounding box. This research selects a pre-trained YOLOv7
object detection algorithm [22] to reduce the necessary training
data.

Figure 5. The Auto Segmentation process’s concept diagram to localize
airplanes in the video frame and extract corresponding bounding boxes.

The YOLOv7 model is a recent iteration of the YOLO
family, designed for object detection in computer vision tasks.
It enhances both accuracy and speed while being compatible
with a small architecture suitable for single-GPU training.
To adapt the model for our video frames (1920x1280x3),
which differ in size from the YOLOv7 input (640x640x3),
we employ a segmentation algorithm. This algorithm divides
the original video frames into six non-overlapping image tiles
(each 640x640x3) to feed into the pre-trained model (see
Figure 5). When an aircraft is detected in any tile, we roughly
estimate its location within the video frame, allowing us to
extract the final image tile centered on the detected aircraft.
This tile then undergoes another pass through the pre-trained
YOLOv7 model to precisely identify the aircraft. This second

pass resolves the issue when an aircraft crosses tile boundaries
and isn’t detected correctly (see Figure 6). We calculate the
bounding box details, such as center location (X and Y)
and size (W and H), corresponding to the original frame
coordinates. The main purpose of this splitting or segmentation
process is to ensure that even distant aircraft (up to 10 NM)
remain sufficiently large in the image. If there are multiple
aircraft in the frame, the same number of final images can be
generated, and each goes through this process independently.

Figure 6. An example case where an airplane is situated between two different
tiles. (a) the output from the first stage of the algorithm, (b) the extracted
image from the second stage, and (c) the result with the accurate bounding
boxes.

In this study, our goal is to predict aircraft locations in
real-time, which requires efficient computing. We’ve fine-
tuned the image-splitting method and data flow to achieve
an average inference time of just 28 milliseconds. Instead of
creating a custom aircraft detection model from scratch, we
use advanced object detectors. This means we can easily swap
out the object detector with other high-performance models for
aircraft detection, and our approach should still perform well
with minimal adjustments.

B. Calibration Network

For each camera view, we train a calibration network to
create feature vectors based on the detected bounding boxes.
This accounts for the variations in camera perspectives. We
also attach an auxiliary regression head with a reversed
network structure to these calibration networks, aiming to
predict aircraft coordinates as the target. To ensure that the
features generated by all calibration networks are not tied
to any specific perspective, we include a regularization term
in the loss function of each calibration network during the
training of the auxiliary head (see Equation 1).

Lossi = Loss(dPredi , dActual) + Loss(dPredi , dPred1−i)
(1)

Here i refers to the ith calibration network corresponding
to either of the camera views in this study. This approach
enhances the accuracy of the predicted location and lowers
the computational expenses related to retraining or fine-tuning
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Figure 7. The convergence curve of the proposed adaptive algorithm for
training the calibration layers of two camera views.

the entire system. So, when a new or adjusted camera input is
introduced, we only need to train its calibration network while
keeping the rest of the system as is.

C. Coordinate Estimator: LSTM and Inference Network

The Coordinate Estimator predicts the aircraft’s location
coordinates by combining the feature vectors from the Calibra-
tion Networks for all camera views, making the predicted co-
ordinates more stable and accurate. This estimator consists of
two parts: an LSTM and a fully-connected Inference network.
The LSTM network in the Coordinate Estimator combines
feature vectors from all cameras into a single representation.
LSTM networks are a type of recurrent neural network (RNN)
known for their ability to capture long-range dependencies
in sequential data, making them suitable for tasks involving
temporal sequences. The LSTM’s sequential design enables it
to handle different numbers of cameras and maintain accuracy
even if some cameras miss to detect objects. Subsequently,
a fully-connected network predicts coordinates. It’s similar to
the Auxiliary Regression Head but works on the unified feature
vectors produced by the LSTM. During training, we randomly
exclude feature vectors from one camera in each mini-batch.
This ensures the model can still make sensible predictions
even if some cameras miss to detect objects. In essence, this
approach lets us merge information from all available camera
views, boosting the overall accuracy and stability of location
predictions.

V. RESULTS AND DISCUSSION

The MAPE curves while training the proposed algorithm
follow a similar pattern for both latitude and longitude pre-
diction. They stabilize at around 0.2% for both latitude and
longitude. We have found that the aircraft’s bounding box
position and size are closely linked to its location and is highly
effective in accurately predicting the location for approaching
aircraft. In the following text, we delve into the experimental
results to evaluate the benefits of our approach.

Figure 8. Comparing Predicted and Actual (Ground Truth) aircraft trajectories,
our approach demonstrates high accuracy in forecasting the location of
approaching aircraft.

(a) Along Track Error

(b) Cross Track Error

(c) Euclidean Distance Error

Figure 9. The effectiveness of the proposed method evaluated on simulated
Changi Airport data. Along-track errors play a more significant role in
contributing to Euclidean distance errors than cross-track errors.
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The evaluation shows that our approach accurately predicts
aircraft location (see Figure 8). The primary source of error in
location estimation is along the track, while errors in the cross
track are minimal (see Figures 9a and 9b). Up to a distance of
6 nautical miles (NM), our approach performs exceptionally
well, with median latitude/longitude errors close to zero (see
Figure 10 and Table II).

(a) Actual vs Predicted Latitude

(b) Actual vs Predicted Longitude

Figure 10. The evaluation of the proposed method’s performance using
simulated Changi Airport data with respect to errors in latitude and longitude.

However, around 8 NM, the error increases briefly before
decreasing again at around 10 NM. This corresponds to a
Distance Measuring Equipment (DME) point at approximately
7.6 NM, as defined in Changi Airport’s Instrument Approach
Chart (AIC). Aircraft adjust their altitude at this point be-
fore crossing the final approach fix (see vertical profile of
aircraft in Figure 3). During this period, the positions and
sizes of bounding boxes in the video feeds are quite similar.
Consequently, estimating location based on these detected
bounding boxes leads to higher along-track errors, resulting in
greater Euclidean distance errors between actual and predicted
coordinates (up to 200m, see Figure 9c) than at other times.
Overall, these results indicate that our approach is highly
effective in accurately predicting the location of approaching
aircraft.

VI. CONCLUSION

In this study, we introduce a multi-Camera view based deep
learning method for estimating aircraft locations accurately up
to a range of 10 nautical miles (10NM). Our approach is built
to maintain stability and consistent performance, even when
dealing with varying numbers of video feeds and noisy inputs
or occasional miss-detections. To address potential changes
in the camera system’s setup, we introduce the calibration
network and auto-segmentation. Using simulated data from
Changi Airport, our approach achieves remarkable and con-
sistent performance (MAPE = 0.2%) for aircraft approaching
from distances of up to 10NM. In our approach, the key to
location estimation lies in the positions of aircraft along their
flight paths. Hence, the landing trajectory patterns captured in
the videos play a crucial role in ensuring the model’s accuracy.
We plan to extend the model for different weather conditions
and apply transfer learning, where the model can adapt to a
real-time video feed by training on a combination of simulated
and real data.
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