BRIDGING THE GAP BETWEEN AI IMPLEMENTATION AND PRODUCTION

(SUPERVISED) MACHINE LEARNING BASICS

		Features				Label	
		[۸	J	ſ	
		Size	Beds	Baths	Zip	Price	
	-	1100	1	1	64576	1.29	
Rc	Rows	1900	3	1.5	78321	2.14	
		2800	3	3	98712	3.10	
		3400	4	3.5	25721	3.75	
				γ]		
				Column	S		
Data	X1, X → <mark>featu</mark>	2 res رو ب	0/	B	uild Mode	(X1, X2)	=Υ
_	X1,3 → <mark>feat</mark>	x2 ures —			᠕ᡐ	Prec	dict
New Data					Use Mod	del	

MACHINE LEARNING VS TRADITIONAL PROGRAMMING

CODED RULES VS ESTIMATED WEIGHTS

TRADITIONAL PROGRAMMING

- Manually formulate/code rules.
- Hundred of thousands of lines of code.
- Written by humans.
- To match the **desired and known output.**

MACHINE LEARNING

- Extract the rules from **historical data**.
- Hundred of weights and mathematical relations.
- Written automatically by an optimization process.
- To optimise an **objective function**.

AN EXAMPLE: ACTIVITY RECOGNITION

TRADITIONAL PROGRAMMING

Rules specified on a highly abstracted but known representation.

MACHINE LEARNING

0101001010100101010 1001010101001011101 0100101010010101001 0101001010100101010

Label = WALKING

1010100101001010101 0101010010010010001 0010011111010101111 1010100100111101011

Label = RUNNING

1001010011111010101 1101010111010101110

1010101111010101011 1111110001111010101 Label = BIKING

1111111111010011101 0011111010111110101 0101110101010101110 1010101010100111110

Label = GOLFING (Sort of)

Just because a Neural network says so, based on a lot of examples.

Image source: https://rstefanus16.medium.com/

THE CURRENT LANDSCAPE...

Andrej Karpathy 🕗 @karpathy · Aug 4, 2017 Gradient descent can write code better than you. I'm sorry.

70

***** \$14,79 yprime

Customers who bought this item also bought

Headphones Carrying Case for Bose QuietComfort 35. Headphone Adapter for QC35, QC25, QC2, QC15, Bose QuietComfort 2 QC3 OC15 OC25 OC35. \$9.99 - prime

SAFETY CRITICAL SYSTEMS IN AVIATION

- Failure would cause a significant increase in the safety risk for the people or environment involved.
- How safe human-controlled transportation systems are?
 - cars: 7 deaths every 10^8 miles
 - buses and trains: 0.1-0.4 deaths every 10^8 miles
 - aircrafts: 0.07 deaths every 10^8 miles

Source: I.Savage, "Comparing fatality risks in United States transportation across modes and over time", *Research in Transportation Economics*, 43:9-23. 2013)

- How this is achieved in the aviation industry?
 - Strong certification process and high requirements.
 - Model-Based Design
 - Fleet-wide analysis
 - Very structured operating environments
 - Well trained personnel (pilots, FAs)

THE "EASY" CHALLENGES OF ML IN AVIATION

• Failure rates

- Numbers that are acceptable in other industries (e.g. banking or energy) are too high for Aviation standards.
- Poor metrics for certification
 - "classification error" is not enough for a lawyer...
- Data requirements...
 - often unknown...
 - but always large (millions of operations).
- Size of errors in relation to the **amount of training data.**
- How do you catch **outliers** and **corner cases**?
 - In Aviation they are very very very rare...
- Individual outputs are not relevant
 - ... but system behaviour is.
- Lack of data providers and data sharing.

THE HARD CHALLENGES OF ML IN AVIATION

• We are way past the peak of the hype cycle...

- The **development timeline** is much longer than what many expect...
- Fundamental issues for adoption remain unsolved.
- A tyrannical effort by industry, academia and **regulatory bodies** is required.

THE PAST, PRESENT AND FUTURE OF AI: DATASETS

eacon

"BECOMING ONE WITH DATA"

- Data is the **single point** of success or failure of an AI product.
- A good understanding of domain knowledge is required.
- Understand the training set:
 - What makes certain instances truly interesting from the rest?
 - What is the importance of certain feature?
 - Do your features cover every aspect of the problem?
- Know how your data behaves over time:
 - Will your data change? It is stationary?
 - Have your data changed? (hello, Covid-19)
- Assess if your data is complete:
 - Do you have enough examples?
 - Do your historical data cover every possibility?
 - Do you need synthetic data?

THE DATA LABELLING CHALLENGE

HIGHLY INTERACTIVE AND NON-TRIVIAL

CARE ABOUT LABEL IMBALANCES...

THEY MATTER IN **SAFETY CRITICAL SYSTEMS**.

ACHIEVING REALISTIC DATASETS

- We need to train with the most **realistic dataset** possible.
- This sometimes means to **tweak** the data.
 - Make it hard to learn...
- Test with "worse case scenarios".
- Look for:
 - High label/examples imbalance: Discard 95% of the label of a class.
 - Noisy labels: Perturb a % of the labels.
 - Multi-Task solutions: Add 10 any other labels.
 - Incompleteness; add 1M of unlabeled cases.

IF MACHINE LEARNING "CODE" IS AN AUTOMATED OPTIMISATION THEN...

WHAT ARE ALL THE HUMANS DOING?

- Label unseen examples.
- Visualize datasets and labels.
- Create/edit labels based on feedback from experts.
- Study mislabeled examples.
- Suggest new examples to label.
- Flag labeller disagreements.
- Engineer and Validate features
- Model supervision

HUMAN-IN-THE-LOOP (HITL)

Source: Testin's Beijing data labeling office

THE POWER OF ACTIVE LEARNING

Source: Munro Monarch, Robert (2021). Human-in-the-Loop Machine Learning: Active learning and annotation for human-centered AI (1st ed.). Manning.

HUMAN ANNOTATIONS: THE UGLY PART

- Humans will provide erroneous labels.
- Labels depend totally on the **previous experience**, **field knowledge**, personality, etc... of your workforce.
- **Disagreements** are expected, after all, these are dubious cases.
- This scales very badly with highly technical problems; e.g. aviation problems.
- Overcoming this challenge requires surprisingly **sophisticated statistics**.

THE "BLACK BOX" PARADIGM

Geoffrey Hinton @geoffreyhinton · 20 feb. 2020

Suppose you have cancer and you have to choose between a black box Al surgeon that cannot explain how it works but has a 90% cure rate and a human surgeon with an 80% cure rate. Do you want the Al surgeon to be illegal?

🖓 810 🗘 1,7 mil ♡ 5,1 mil ᠿ

ACCURACY VS INTERPRETABILITY

Source: https://towardsdatascience.com/guide-to-interpretable-machine-learning-d40e8a64b6cf

DEEP LEARNING AND "THE FUTURE"

• February 2020: Microsoft's Turing NLG (17 billion parameters)

Source:

https://www.microsoft.com/ en-us/research/blog/turingnlg-a-17-billion-parameterlanguage-model-bymicrosoft/

OPENING THE BLACK BOX

- Visualizations are the key.
 - Training set
 - Labels
 - Predicted values
 - Features

DataBeacon

OPENING THE BLACK BOX

- Local techniques
 - Study a small portion of the ML model
 - For example, an exact layer of a neural network

- Global techniques
 - Study the model as a whole.
 - For example, in/out of the complete neural network

ataBeacon

WE HAVE THE TOOLS TO INTERPRET ML

Saliency Maps	Model-specific NN Layer Visualization
Occlusion Maps	Feature Weights
Local	Global
LIME Input Gradients	Partial Dependency
Shapley Values	Plots Model-agnostic

www.DataBeacon.aero info@databeacon.aero