
traffic

a toolbox for processing and analysing air traffic data

Xavier Olive, ONERA

MONDAIS, 7th June 2021

1/11



ID

• Code: https://github.com/xoolive/traffic/
Documentation: https://traffic-viz.github.io/

• Started early 2018

• traffic, a toolbox for processing and analysing air traffic data, Journal of Open Source
Software (4), 2019. DOI: 10.21105/joss.01518

2/11



Architecture

Several modules with a particular focus on:

• access to data (ADS-B, DDR, AIXM, B2B, METAR, OpenStreetMap, etc.)
• trajectory processing, the most time consuming…
• specialised algorithms
→ CPA, clustering, operational event labelling, etc.

• data visualisation
→ maps, interactive visualisations, etc.

3/11



Core structures

from traffic.core import Flight, Traffic

Flight.from_file(...) # one single trajectory
Traffic.from_file(...) # a collection of Flight

flight.duration
flight.first("10 minutes") # a new Flight
flight.intersects(my_tma) # a boolean
flight.simplify() # Douglas-Peucker simplification
flight.aligned_on_ils("LFPO") # iterates on segments on final approach
flight.go_around()

4/11



Access to data

from traffic.data.samples import * # for documentation and testing
from traffic.data.datasets import * # public datasets included in publications

from traffic.data import airspaces # public sources or AIRAC data
from traffic.data import airports # airports, runways, apron structure

02

20

06

24

0
7

2
5

airports["LFPO"]

5/11



What coding can look like?

for flight in quickstart: # a sample dataset for the documentation
if not flight.intersects(lfbo_tma):

continue
filtered = flight.filter()
if filtered.min("altitude") < 10_000:

if filtered.mean("vertical_rate") < -500:
if filtered.aligned_on_ils("LFBO").next() is not None:

landing_trajectories.append(filtered)

6/11



How coding “should” look like?

quickstart
.intersects(lfbo_tma)
.filter() # clean values
.feature_lt('altitude_min', 10_000)
.feature_lt('vertical_rate_mean', -500)
.has("aligned_on_LFBO")
.eval() # go!

• a flattened representation of the preprocessing is easier to proofcheck
• define a grammar of features meaningful from an operational point of view

7/11



Example code

• Select go-around situations at Zurich airport

my_dataset.has("aligned_on_LSZH").has("go_around").eval()

• Compute occupancy stats for a given airspace

my_dataset
.clip(airspaces["LFEE5R"])
.eval()
.summary(["callsign", "icao24", "typecode", "start", "stop", "duration"])

8/11



DEMONSTRATION



Use-cases

In today’s presentation (hopefully):

• Go-around detection
• Midair collision
• Milestones for airport ground operations
• Point merge

More in the documentation:
• Trajectory clustering
• Weather reconstruction
• Landing configurations
• …

Soon(ish) in the documentation:
• Occupancy metrics
• Closest point of approach
• Turbulence detection
• …

9/11



Perspectives

• Provide reference data sets, enriched with metadata

• “Standardise” definitions of aircraft trajectory processing
Encourage implementations in more programming languages:
→ trrrj (R), Javascript (in progress), Julia, OCaml, etc.

• Better tested, better documented (community effort)

• Go more scalable (Spark?)

• Interactive visualisation tools for in-depth analysis (Javascript, WebGL, more?)

10/11



Key take-aways

• Open-source is better than closed source
… but it does not mean it is perfect ××× DISCLAIMER ×××

• Data has no immediate value

• Information is valuable, but the extraction process is hard

• Code is not precious, expertise is

• Humans read code, help experts read it too

• Use declarative style for better reproducibility

11/11


	Demonstration

