

Stepping stones towards a safe AI in aviation

MONDAIS Webinar 1^{rst} of March 2021

> Marta LLOBET LOPEZ EUROCONTROL

marta.llobet-lopez@eurocontrol.int

Safety Critical systems

A **safety-critical system** is a system whose failure or malfunction may result in one (or more) of the following outcomes: death or serious injury to people, loss or severe damage to equipment / property, or environmental harm.

Regulation and Standards

Safety in aviation ... as well for Al!

Safety Case is a structured <u>argument</u>, supported by <u>evidence</u>, intended to justify that a system is <u>acceptably safe</u> for a <u>specific application</u> in a <u>specific operating environment</u>.

European Aviation Al High Level Group

Scope : Aviation / <u>Air Traffic Management</u>

Focus : what we can do **TODAY**

Demystify Al

Promote AI based applications and its benefits

Identify Business Challenges

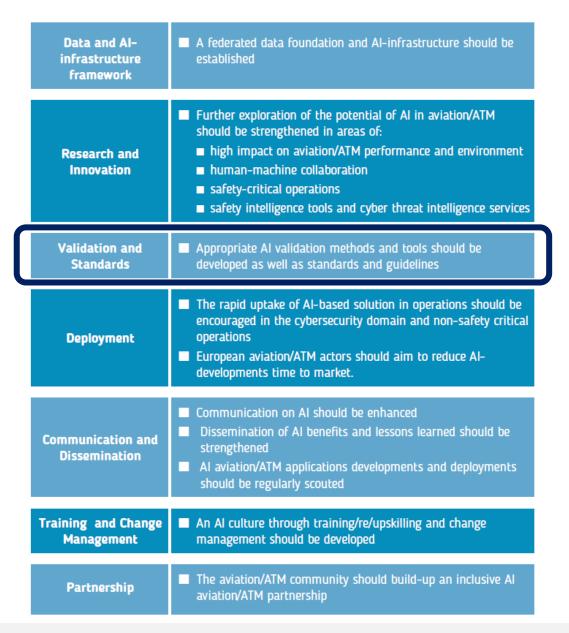
Recommendations to accelerate AI uptake

EUROPEAN AVIATION ARTIFICIAL INTELLIGENCE HIGH LEVEL GROUP

The FLY AI Report

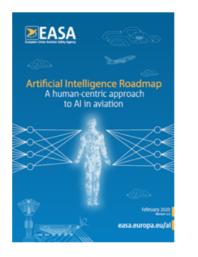
5th March 2020

Demystifying and Accelerating AI in Aviation/ATM



WITH INPUTS FROM EDA MILITARY EXPERTS AND NATO ATTENDING IN AN OBSERVING CAPACITY

EUROCONTROL On-going activities



G-34, Artificial Intelligence in Aviation

AS6983: Process Standard for Development and Certification/Approval of Aeronautical Safety-Related Products Implementing AI

ECTL-EASA Cooperation on AI

Support to Guidance on AI

Use Cases proposed by ECTL

Pre-tactical Forecasting

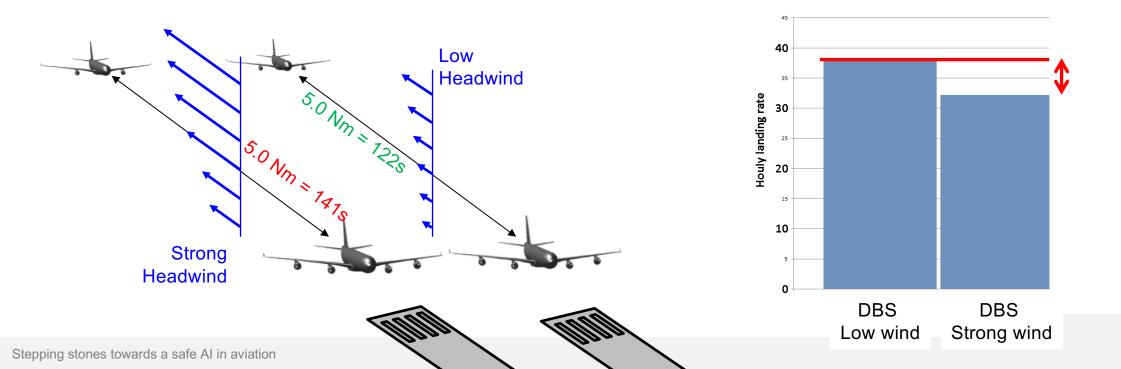
Climb & Descend

Network congestion Detection

Network congestion Resolution

Time Based Separation

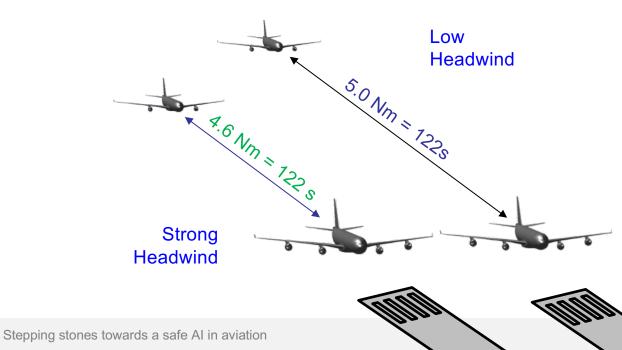
Separation based on time in place of distance


Time Based Separation - TBS

Source: F.Rooseleer, R.Barragan, I.DeVisscher

Time Based Separation (TBS) permits the adaptation of separations to improve runway throughput in strong headwind conditions

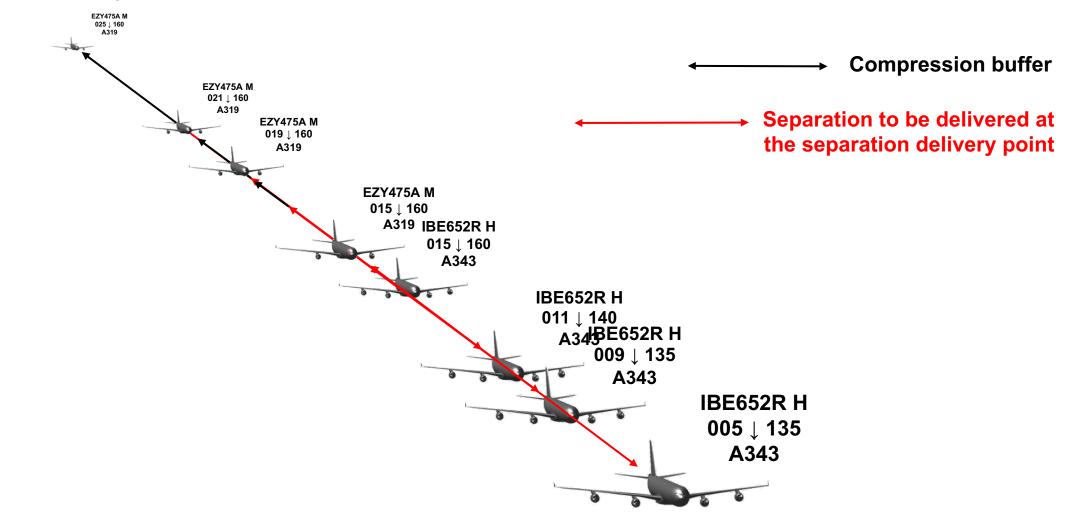
Strong headwind increases time separation for constant distance applied


Separation based on time in place of distance

EUROCONTROL

Time Based Separation - TBS

Source: F.Rooseleer, R.Barragan, I.DeVisscher

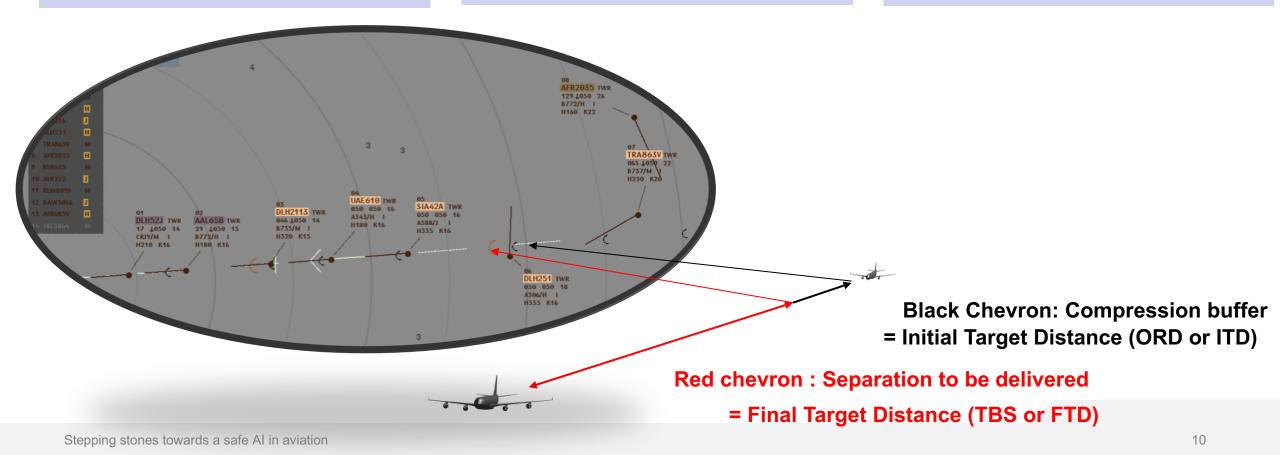

Time Based Separation (TBS) permits the adaptation of separations to maintain runway throughput in strong headwind conditions

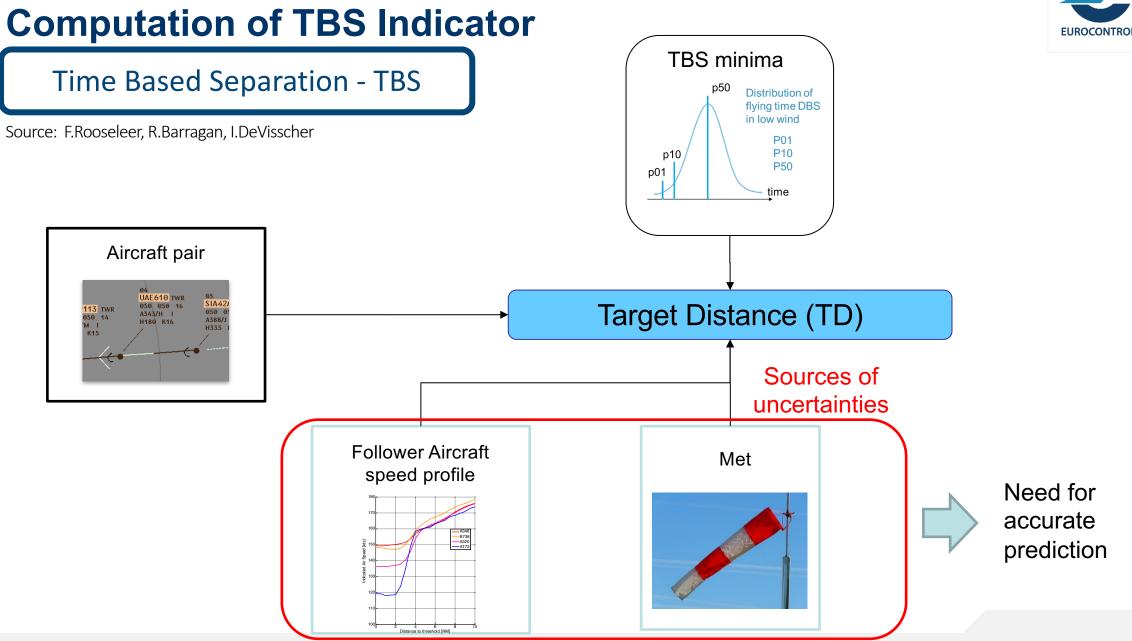
- Strong headwind increases time separation for constant distance applied
- Reduced separations support constant time between 2 landings in strong headwind conditions

Separation based on time in place of distance Optimised Runway Delivery - ORD

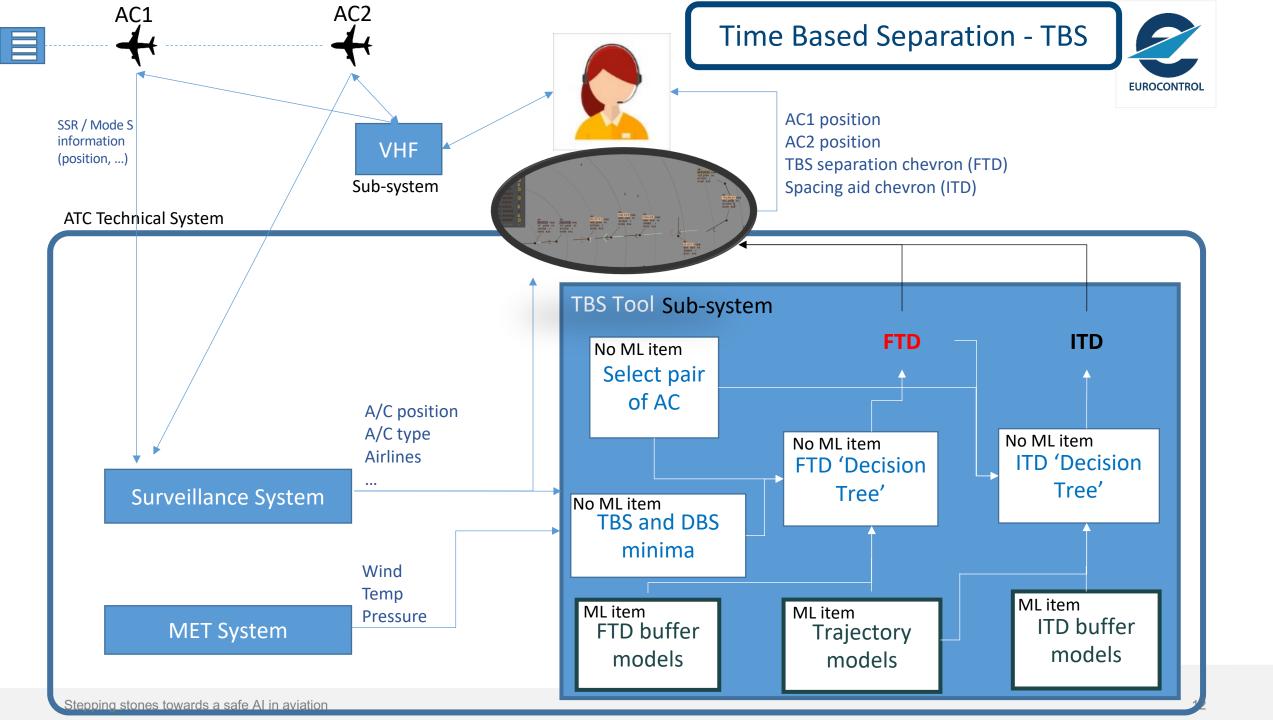
Source: F.Rooseleer, R.Barragan, I.DeVisscher

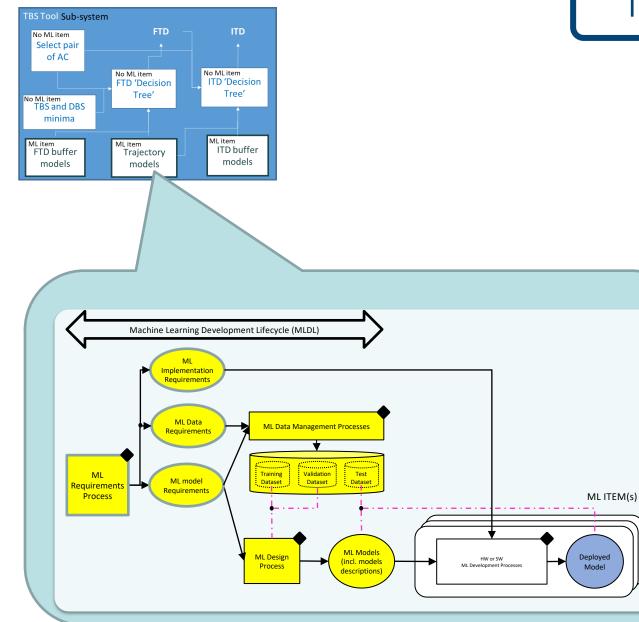
EUROCONTROL


Calibration of Optimised Approach Spacing Tool - COAST


Source: F.Rooseleer, R.Barragan, I.DeVisscher

TBS delivery necessitates Distance Indicators


ATCOs applies separation buffers by experience during spacing at interception for ensuring separation compliance (still with margins) at threshold TBS can be completed by ORD = Optimum Runway Delivery for more efficient management of compression buffers based on prediction



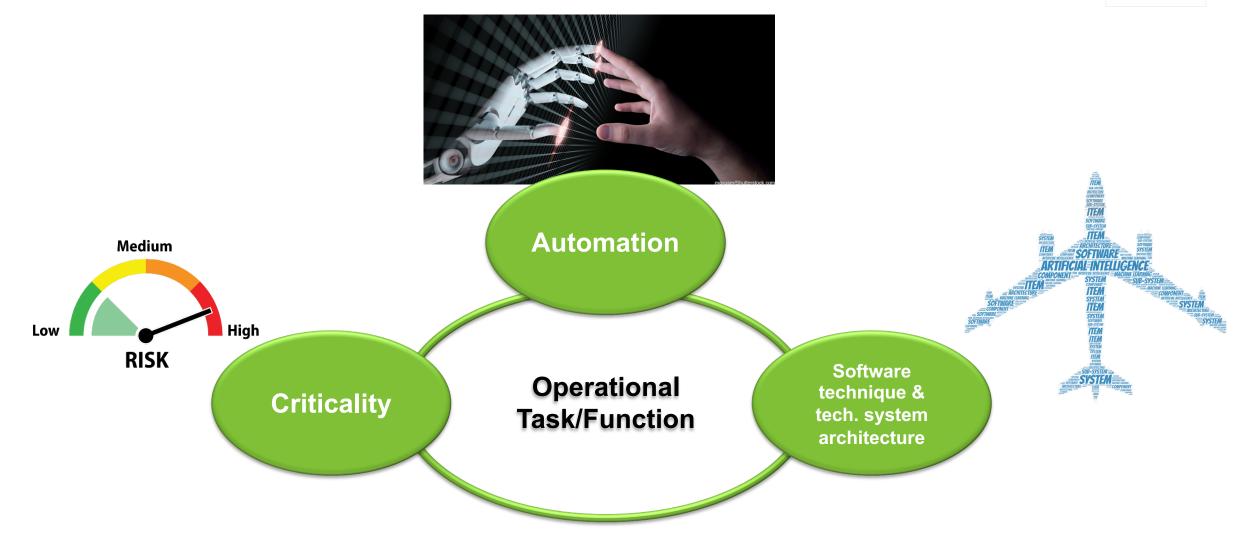
Stepping stones towards a safe AI in aviation

Time Based Separation - TBS

How to 'specify' and develop the *ML* items?

How to integrate them?

How to verify and validate the items?


How to verify and validate the subsystem?

Source: EUROCAE WG114 / SAE G34 – SG3

Stepping stones towards a safe AI in aviation

How to specify the ML items To be safe ?

Provide optimised separation minimum, as per TBS rules, to each pair of aircraft in the final approach

Taxonomy for automation and cognitive processing

Source: Automation, Operator Functions and AI (A.Kilner)

The taxonomy is based on scientific papers presented by the FAA, SESAR and Industry

From the operator perspective

Industry		Cognitive process				
-			Cognitive pr	Decision And Action	Action	
		Information Acquisition	Information Analysis	Selection	Implementation	
		AO	во	C0	D0	
	0	Manual Information Acquisition	Working Memory Based Information Analysis	Human Decision Making	Manual Action and Control	
		A1	B1	C1	D1	
	1	Artefact-Supported information Acquisition	Artefact-Supported Information Analysis	Artefact-Supported Decision Making	Artefact-Supported Action Implementation	
	2	A2	B2	C2	D2	
		Low-Level Automation Support of Information Acquisition	Low-Level Automation Support of Information Analysis	Automated <u>Decision</u> <u>Support</u>	Step-by-step Action Support:	
		A3	B3	C3	D3	
Increasing task support (LOA) [1]	3	Medium-Level Automation Support of Information Acquisition	Medium-Level Automation Support of Information Analysis	Rigid Automated Decision Support	Low-Level <u>Support</u> of Action Sequence Execution	
		A4	B4	C4	D4	
	4	High-Level Automation Support of Information Acquisition	High-Level Automation Support of Information Analysis	Low-Level Automatic Decision Making	High-Level <u>Support</u> of Action Sequence Execution	
	5	A5	В5	C5	D5	
		Full Automation Support of Information Acquisition	Full Automation Support of Information Analysis	High-Level Automatic Decision Making	Low-Level <u>Automation</u> of Action Sequence Execution	
				C6	D6	
	6			Full Automatic <u>Decision</u> <u>Making</u>	Medium-Level <u>Automation</u> of Action Sequence Execution	
					D7	
	7				High-Level <u>Automation</u> of Action Sequence Execution	
					D8	
	8				Full <u>Automation</u> of Action Sequence Execution	

¹ In fact Parasuraman [2] proposes 10 levels of automation however within Aviation, the first 9 are relevant to Systems where the operator remains present

TBS with (FTD) separation indicator

Information acquisition	Automated function:	Operator task:						
Information acquisition								
AC/ position Type of A/C Weather (wind)	 Surveillance System + FLP information displayed on the screen Weather information system 	N/A						
Information Analysis								
Identify pairs of A/C on the final approach	Done by an ATC equipment, not directly indicated to the operator	N/A						
Decision and action selecti	on							
Select the separation to be applied between pair of A/C	TBS tool calculating the TBS separation and displaying a chevron on the screen	Decision on the separation to be applied and selection of the instructions to be given to the pilot						
Action Implementation								
Send instruction to pilot to apply separation	VHF	Controller sends the instructions to the pilot						

LoA Task profile = A5 – B5 – C4 – D1

TBS (FTD)		Cognitive process				
		Information Acquisition	Information Analysis	Decision And Action Selection	Action Implementation	
		AO	BO	CO	D0	
Increasing	0	Manual Information Acquisition	Working Memory Based Information Analysis	Human Decision Making	Manual Action and Control	
	1	A1	B1	C1	D1	
		Artefact-Supported information Acquisition	Artefact-Supported Information Analysis	Artefact-Supported Decision Making	Artefact-Supported Action Implementation	
	2	A2	B2	C2	D2	
		Low-Level Automation Support of Information Acquisition	Low-Level Automation Support of Information Analysis	Automated <u>Decision</u> Support	Step-by-step Action Support:	
		A3	B3	C3	D3	
	3	Medium-Level Automation Support of Information Acquisition	Medium-Level Automation Support of Information Analysis	Rigid Automated Decision Support	Low-Level <u>Support</u> of Action Sequence Execution	
task support		A4	B4	C4	D4	
(LOA)	4	High-Level Automation Support of Information Acquisition	High-Level Automation Support of Information Analysis	Low-Level Automatic Decision Making	High-Level <u>Support</u> of Action Sequence Execution	
	5	AS	ВЭ	C5	D5	
		Full Automation Support of Information Acquisition	Full Automation Support of Information Analysis	High-Level Automatic <u>Decision Making</u>	Low-Level <u>Automation</u> of Action Sequence Execution	
				C6	D6	
	6			Full Automatic Decision Making	Medium-Level <u>Automation</u> of Action Sequence Execution	
					D7	
	7				High-Level <u>Automation</u> of Action Sequence Execution	
					D8	
	8				Full <u>Automation</u> of Action Sequence Execution	

Using LOAT to design Automation

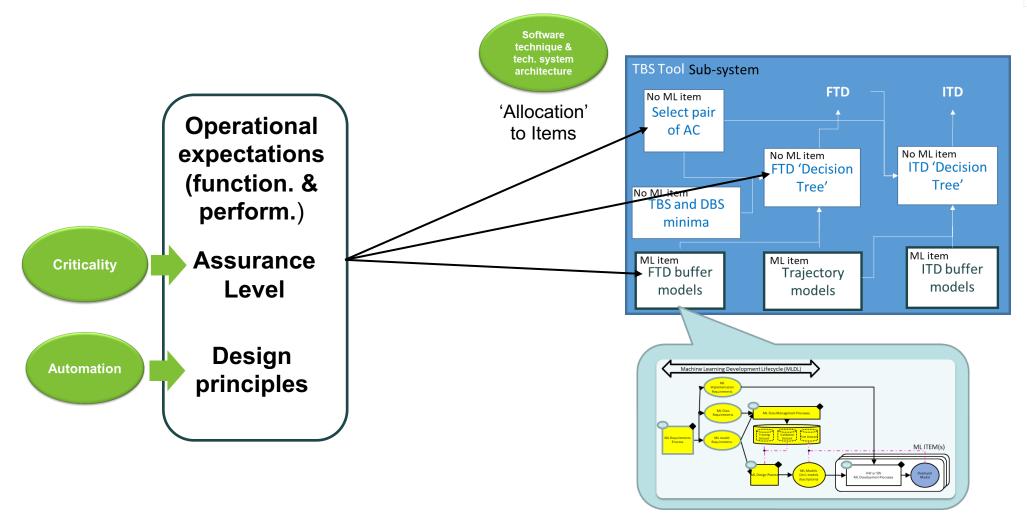
For each Level of Automation, a set of principle are to be taken in to account for the design of the Automated Function.

For example:

Design Principle : Awareness of system limitations

In case the information acquisition function does not have the capability to present operationally relevant information items, the user should be made aware of this limitation with appropriate HMI design solutions

Design Principle : Suppression of Alerts

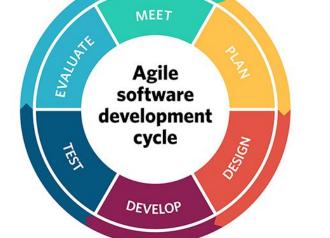

If the decision support by automation can be overridden by the user, then define clear criteria or mechanisms for reactivation or reinsertion of the automation support.

• Design Principle : Mode Error Prevention

When an automated function can be configured to work according to different modes, it is essential that the user is always made aware of the active mode and timely informed of any mode change. To the extent possible the HMI design should contribute to minimize the risk of mode errors.

'Specify' the ML items

Stepping stones towards a safe AI in aviation


Step by step ...

Safety integrated in the design process ... from the beginning!

How to integrate the items?

How to verify and validate the ML items?

> How to verify and validate the subsystem?

