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Abstract—Maintaining the safety and cost-effectiveness of air
transport operations, while increasing capacity, will push the
next generation of ATM systems towards digitization. In the
medium term, a digitized system in the human-managed ATM
environment will be able to provide reliable predictive analytics
based on automated information processing, thus providing
decision support to human operators. This paper details the
development of a machine learning based solution for go-around
predictions, exemplified at two major European airports. Go-
arounds are standard, high workload, procedures by which an
aircraft in the final approach phase can safely discontinue the
approach. The proposed machine learning solution is aimed at
increasing safety levels in airport operations by enhancing air
traffic controllers situational awareness and helping them better
plan and adapt to go-around scenarios. This work leverages
on more than two years worth of ADS-B and successfully uses
oversampling technique to combat the high imbalanced in the
data. In addition, we performed a benchmark study with a
selection of the most common classification models. The final
type of model selected was LightGBM for which a feasibility
study for predictions at 2NM, 4NM, 6NM, and 8NM distance
from the runway threshold was performed. The results for both
airports showed that although the models’ recall decreases with
the distance from the threshold, we were able to maintain a
high prediction precision between 90% at 2NM to 80% at
8NM. Finally, a study of the explainability of the probabilistic
predictions was carried out by evaluating the most important
features of the models.

Index Terms—Go-around, safety, machine learning, lightGBM,
SMOTE, explainability

I. INTRODUCTION

The next generation of Air Traffic Management (ATM)
systems are pushed more and more towards digitalization.
New developed digitized systems will mainly rely on big data
technologies and the fusion of data from multiple sources.
This will be reinforced by the use of Artificial Intelligence
(AI) algorithms that, through the use of this data, will be able
to provide accurate prediction in a multitude of scenarios.
The first step in this new era of digitalization is going to
be the integration of newly developed systems with human
operational management, introducing quantifiable performance
predictions into the ATM decision making process. These
new decision support tools, based on AI predictions, will
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enable safety applications to create a more proactive, data-
driven approach to safety management, capable of predicting
potential safety risks in real time. There are examples where
data analysis and Machine Learning (ML) techniques have
been successfully used on safety-related problems such as
detection of unstable approaches [1], [2] or runway excursions
[3].

Among the different phases of a flight, the approach and
landing phase is often considered one of the most critical.
Statistics from 1995 to 2015 place 23% of fatal accidents occur
during in this flight phase [4]. This is due to the special nature
of the final approach and landing phase. The occurrence rate
of errors or problems arising is higher than in other phases
since pilots and Air Traffic Control Officers (ATCOs) have
to deal with more situational changes, more decision making
in a short period of time and more operational activity [5].
In order to mitigate the safety risks in the approach and
landing phase, there is a special procedure called go-around,
or missed approach, that aims to interrupt a landing that
is considered unsafe. According to Flight Safety Foundation
statistics, on average one to three go-arounds occur per thou-
sand approaches [6]. One of the main reasons for initiating
a go-around is an unstable approach. This procedure seeks to
discontinue the landing which, if continued could extend to a
more serious incident such as a runway excursion. However,
evidence showed, that only 5-10% of all unstable approaches
(which typically occur at around 2-5% of all landings) ended
in a go-around [7]. This is why in recent years, different
policies have been deployed to encourage crews to perform
a go-around more often.

Even though performing a go-around is encouraged and they
are standardised procedures, they can evolve into other safety
problems due to their complexity. It should be noted that go-
arounds are usually executed in a high workload situations for
pilots and ATCOs as well as low altitudes, low speeds and
close to the ground. This is why the work presented in this
paper focuses on the development of an ML-based prediction
tool that can provide advance warning of those aircraft that
will potentially perform a go-around.

This paper falls under the scope of the SafeOPS project
which investigates how predictive AI tools can be used in
ATM as decision support technologies to facilitate controllers
making complex decisions. The overall objective of SafeOPS



is to determine whether a predictive AI tool for go-around
forecasting could decrease the workload and stress of the
ATCOs by increasing their situational awareness and at the
same time adding safety and resilience through increased
predictability to the overall system.

The paper is organized as follows. First, Section II includes
a more in-depth go-around problem definition and assessment
based on a user-centered development as well as review of
the main previous works done. Then, Section III provides and
overview of the data used. Section IV describes the method-
ology used for the development of the tool and a benchmark
of different possible model solutions. Section V provides the
results of the final model developed and assessment of the
explainability of the results. Finally, conclusions are drawn in
Section VI.

II. PROBLEM ASSESSMENT AND DEFINITION

A. Go-around scenario

One of the main causes of approach and landing accidents
is the lack of recognition of the need and execution of a
go-around. The Flight Safety Foundation published a study
which states, that in situations of unstable approach if flight
crews had decided to perform a go-around, 83% of runway
excursions and 54% of all accidents analyzed could have
been avoided [6]. During the development of the ML go-
around prediction tool, to ensure that the technical work was
consistent with stakeholder needs and perceptions, a user-
centered development process was established. This process
based on recurring workshops of researchers and stakeholders,
mainly air traffic controllers and pilots. In these workshops,
after reaching a common understanding of the objectives,
possible application scenarios and use cases were designed,
from which an initial set of requirements were derived [8].

Each airport publishes specific missed approach procedures
for each of its runways, which are briefed in the cockpit
before landing attempts. In case of a go-around, the flight
crew usually follows the briefed procedure, which nevertheless
requires close coordination with ATCOs. Even though flight
crews are trained for go-around situations, a go-around can be
a demanding, peak workload situation. Due to the high amount
of traffic before Covid-19 at most European airports, following
the standard missed approach procedure is not necessarily the
safest option to resolve a go-around. The operational situation
may be such, that to ensure separation (visual, radar or wake)
between aircrafts, the ATCO will vector the go-around aircraft,
rather than simply clear it for standard procedure. Under these
circumstances, the controller’s and pilots’s workload can in-
crease, leading to a stressful situation. The flight crew can also
be overwhelmed by the required deviations from the standard
go-around, causing problems in complying with the ATCO
requests [9]. Therefore, a decision support tool, predicting
go-arounds time in advance, could provide additional insight
into the operational situation, and positively influences ATCO
situational awareness and avoids additional stress factors.

Through the work carried out in the workshops with stake-
holders, different scenarios were defined in which a go-around

could represent a situation of high workload and stress. With
the selection of scenarios, we intend to describe situations,
in which a decision support tool can have an impact on
the go-around handling of ATCOs. Fig. 1 (not to scale),
shows a scenario, in which the standard go-around procedure
dictates an overflight of the runway continued by a left
turn. In situations where the runway is used in mixed mode
operation, meaning departures and arrivals are handled on the
same runway, the aircraft performing the go-around could,
due to a higher performance, catching up with the departing
aircraft, which would cause separation problems. To ensure
radar separation, the ATCO must decide whether the outgoing
go-around aircraft or the departing one should be vectored.
The solution shown in Fig. 1 is to vector the go-around
immediately to the left, with the consequent increase in flight
crew workload. The introduction of a prediction tool could
increase ATCO situational awareness. Depending on how far in
advance the prediction is given the ATCO could, among other
options, holding back the departing aircraft from lining up
and if finally there is a go-around, allow the approaching flight
crew to follow standard procedure or increase the gap between
the two conflicting aircrafts by issuing a speed reduction to
the arriving aircraft.

Fig. 1. Flight phase detection logic for ADS-B data.

B. Machine Learning prediction scenario

Based on the defined scenarios and user experience, gath-
ered from the stakeholders, a set of requirements that englobe
the go-around situations can be defined. These requirements
are key to be able to translate the operational needs of the
ATCOS into a more technical definition of the ML solution.
The objective of the tool is to predict whether given an
approach, the aircraft will land or perform a go-around. There-
fore, we can define the ML problem as a binary classification
problem. Additionally, to develop confidence and trust in the
predictions, the solution presents a degree of explainability
beyond just metrics to measure its performance, such as
the confidence level in a prediction or feature importance.
Moreover, we defined as a requirement that the level of false
alarms should be as low as possible. A high level of false
alarms can lead to loss of confidence in the tool. Therefore,
the ML solution should to present high levels of precision even
at the cost of detecting a lower number of go-arounds (recall).

The prediction horizon of the model is defined as the
distance from the runway threshold of the runway at which
the go-around prediction will be performed. To establish it,



we take into account that the work focuses on the control
zone and terminal control area, in which a a tower controller
is responsible. The handover from the approach to the tower
controller usually occurs approximately at 8-12 NM from the
runway threshold, so this will be marked as the maximum
prediction horizon of the model. ATCOs need to have as
up-to-date a picture of the situation as possible to improve
pre-planning and prepare as best as possible for changing
circumstances. The earlier the information on a likely go-
around is given, the more time the ATCO has to decide on its
next actions. Therefore, four prediction horizon points spaced
every 2 NM (At 2 NM, 4NM, 6NM and 8NM from runway
threshold) are established. This distance spacing is decided for
the initial prototypical development for the SafeOPS project,
to evaluate the impacts of a decision support tool on the go-
around handling. Depending on the field experts’ feedback,
the spacing might change in the later phases of the project.
Here it is worth noting that, according to the feedback from
experts collected during workshops, we can highlight the 4
NM prediction as the most relevant prediction horizon. This
is the minimum distance at which the prediction can be
still used to make operational changes (e.g., not authorizing
a takeoff on the same runway or instruct a go-around to
the approaching aircraft). From 4NM onwards all clearances
and/or indications should be given and in this space nothing
should be instructed (except in case of emergency) and thus,
the prediction could only be used as a warning and to increase
situational awareness.

Finally, the ML model should be able to make predictions
with information that is available at the time of the prediction
from the Air Traffic Control (ATC) side. This may include
flight path information (e.g. ground speed or altitude), aircraft
information (e.g. callsign), weather and airport traffic infor-
mation.

C. State-of-the-art review

Most of the bibliography on go-arounds is focused on the
study of their factors and causes [10], [11], or on the study of
the high workload flight crew face in go-arounds procedures
[9], [12]. Nonetheless, there are several works centered on
go-around predictions with varying degrees of success.

The work done in [13] propose a prediction model based
on Input-Output Hidden Markov Model (IO-HMM) predicting
every 1 NM from the 10 NM of the runway threshold. The
study period spanned approximately 6 months (July-December
2018) at JFK Airport with a total 100,032 arrivals and 371
go-arounds. The data used included: flight path data obtained
from Integrated Flight Format (IFF) and Reduced Data (RD)
summaries from the NASA Sherlock Data Warehouse, Airport
Surface Detection Equipment Model X(ASDE-X)f for airport
surface data and FAA aviation system ASPM) for airport
configuration and weather related information. They applied
a undersampling technique to mitigate the data imbalance
problem. The best performance result obtained by the model
was at 2 NM, detecting 41.7% of all go-arounds but with a
precision of 15.5

The work done in [14] explores the use of different decision-
tree based ML classification algorithms for the prediction
of go-arounds. The study develops the models for runway
14 at Zurich International Airport. They use almost four
years (1 January 2017 - 30 June 2020) of ADS-B (Auto-
matic Dependent Surveillance–Broadcast) data which include
almost 250,000 landings and 715 go-arounds. The authors
methodology produced two types of models: macroscopic
and microscopic. The macroscopic model aims to predict the
occurrence of a go-around within the next hour, while the
microscopic model predicts the go-around probability of each
approach when the aircraft is at 10 Km (approximately 5.4
NM) from the runway threshold. As in the previous work [13],
they also apply undersampling technique to mitigate the data
imbalance problem. The best performance was obtained by
using a Random Forest, which managed to detect 50% of the
go-arounds but only 2% of the predicted go-arounds being
actual go-arounds.

In [15] the authors use a tree-based machine learning model
for go-around detection and prediction at specific distances
from the runway threshold. The work is focused on Philadel-
phia International Airport for a period of approximately 10
months (1 March 2019 - 31 December 2019) with a total of
132,118 arrivals and 662 go-arounds. The data used included:
ADS-B for flight trajectories data, Meteorological Aerodrome
Reports (METAR) for weather information and open-access
resources for aircraft data and flight timing (e.g. arrival time,
departure time or touchdown time). The authors also apply
undersampling technique to mitigate the data imbalance prob-
lem. Using an ensemble method (XGBoost) they obtained the
best performance results at 2 NM being to correctly predict
56% of all go-arounds with a 90% precision.

III. DATA

For the development of the ML support tool, we decided
to focus on two major European airports: Frankfurt airport
(EDDF) and Munich airport (EDDM). We decided to develop
separate ML models for each airport since the particularities
that each airport may present (e.g. runway configuration,
operation minimas, noise restrictions) could hinder the perfor-
mance of single general ML solution. In addition, this gives
us the opportunity to compare and assess the performance and
usability of ML solutions in go-around prediction scenarios.
The types of data collected can be classified into three groups:
flight data, aircraft data and meteorological data.

For flight data we used Automatic Dependant Surveillance-
Broadcast (ADS-B) data provided by the OpenSky Net-
work [16]. ADS-B is surveillance data that relies on aircraft
broadcasting their identity, position and other information
derived from on board system. Aircraft data was also obtained
through the OpenSky Network. They provide a historical
aircraft database with information related to an aircraft’s
ICAO24 unique 24-bit identifier, model or their Wake Turbu-
lence Category (WTC). Finally, meteorological data was ob-
tained through historical Meteorological Aerodrome Reports
(METAR) extracted from Iowa State University [17]. METAR



are routine aviation weather reports of actual observed condi-
tions at an airport or near one (e.g. wind, horizontal visibility,
cloud coverage).

A. Data Processing

The ADS-B data used in the present study were extracted
by defining a 2D polygon (approximately 50 NM by 30 NM)
centered on the airports of interest and obtaining all trajectories
contained therein from April 2018 to February 2020. The first
step in the processing pipeline is to identify unique flight based
on the timestamp, date and callsign and then filter out all those
ADS-B trajectories of flight over flights. Then, based on the
evolution of the flight parameters, especially the altitude, it is
identified whether the trajectory corresponds to an approach
or a take-off.

The processing of approaching flights is mainly character-
ized by the standardization of flight parameter units, trans-
forming them into International system (SI) units, and the
elimination of possible errors in the data. The major errors
present in the data are noisy/outlier data points and erroneous
data points in the touchdown phase of the approach. For
noise and outlier filtering, a median filter is used to remove
erroneous data points [18]. To not lose granularity in the
data, an interpolation process is applied to the removed data.
Erroneous data in the touchdown phase of the approach can
cause identical data in several data rows and/or tracking
departures under the previous callsign. For this purpose the
flag ”On ground” in ADS-B data is added as checking flag.
This check utilizes an engineered height above airport level to
verify the ”On Ground” flag and if discrepancies are detected
to change the indication of the flag according to the height
above airport level.

Finally, prior to the feature engineering activities, the sep-
arate flight phases contained in the flight data are detected.
The detection of the flight phases is key for the identification
and labelling labeling of go-arounds and is described in more
detail in the next subsection. The processing of the identified
departures contains the same steps as the approaches with
minor differences in the specific pipeline.

B. Go-around Labelling

The go-around labelling is performed by means of a flight
phase detection algorithm. The flight phase detection algorithm
was initially developed for H2020 SafeClouds.eu project [19],
a predecessor project of SafeOPS. The algorithm uses a flight
phase detection based on a state machine shown in Fig. 2.
The state machine defines a set of possible flight phases (or
states) which an aircraft can transition into from a current flight
phase. For example, from the flight phase ”Climb” it could
be transitioned into ”Cruise” or ”Descent”. For both options
a logic is defined which describes the necessary behavior of
the flight data to be categorized as either one. Three different
categories of behavior are used. The first category are direct
booleans from the flight data (e.g. On ground flag). The second
category are trends where timeseries are smoothed with a
moving average and divided in a positive, negative or no

trend. The last category are simple thresholds for certain time
series. The transitions between the different phases in Fig. 2
are abbreviated as follows:

• Booleans:
– A: is airborne
– ¬: not true

• Continuous time series used for trends and thresholds:
– H: pressure altitude
– VS: vertical speed
– G: ground speed

• Trend definition:
– =: trend remains constant / rate is zero
– +: trend increases / positive rate
– -: trend decreases / negative rate

Fig. 2. Flight phase detection logic for ADS-B data.

Additionally, a shortcut was introduced from the Pre-Flight
phase directly into the Descent phase, as the ADS-B data is
already filtered in the processing pipeline to contain data from
the terminal areas of the airports selected. The state machine
also copes with flight data ending before the Cruise phase (i.e
departing traffic). In the go-around labelling the state transition
is defined with the three parameters pressure altitude, vertical
speed and ground speed. The pressure altitude and the ground
speed need to show a positive trend while the vertical speed
needs to be positive. Fig. 3 shows, through the use of the flight
phase detection algorithm, a go-around approach correctly
identified and splitted into the go-around approach (blue) and
the missed approach procedure and landing (red). However,



not all go-arounds can be detected with such clear behaviour
of the data, especially if there is a go-around in the early stages
of the final approach. The thresholds that classify the trend can
be fine-tuned to capture them correctly although, in most of
these cases the maneuver starts even before 10NM prediction
point so they are not of interest for this work.

Fig. 3. Visual example of go-around procedure.

C. Feature Engineering

Table I contains a summary of features that were used in
the predictive models of this paper. The defined features have
been grouped into four feature types according to their nature.
In addition, we can distinguish between two features sources.
”Available in data” includes features that although may have
undergone some transformation (e.g. change of units, remove
outliers) are considered to be extracted directly from the data
sources. ”Engineered feature” includes those features that have
been constructed through the transformation and combination
of primary features. This selection of features is intended to
provide the most complete view of the operational scenario to
model through the available data.

Table I also presents a brief description of each of the
features extracted from the data. Even so, it is considered
appropriate to give a more detailed explanation of some of the
feature for their correct understanding. The ”Specific energy
level” (SEL) is the sum of the specific potential energy and
the specific kinetic energy:

SEL = h · g + 0.5 · V 2 (1)

Where h is the aircraft’s altitude, V the ground speed and g
the gravitational acceleration. SEL does not require having
information related to the mass of the aircraft. However,
the mass still has an influence as higher mass aircraft’s
present higher ground speeds during the approach. ”Centerline
deviation” refers to computed angular difference between the
approached runways’s center-line and the true track between
the aircraft position and the threshold position, as shown in
Fig. 4. The ”Track/Runway Bearing deviation” feature refers
to the computed angular difference between true track of the

aircraft and true bearing of the runway, also shown in Fig. 4.
Both these features combined with the distance to the runway
threshold are used to identify the runway being approached
by a flight, ”runway ID”. A metric defined as the geometric
mean between these two features (Centerline deviation and
Track/Runway Bearing Deviation) and the runway threshold
is computed. The chosen runway will then be the one pre-
senting a smaller value of this geometrical mean. Finally, the
”Approach type” is identified through the visibility and sky
cover from the METAR reports. If visibility is lower than 5000
meters and the sky cover is below 1000 feet we establish IMC
if not VMC.

Fig. 4. Visual example of go-around procedure.

IV. BENCHMARK STUDY

Table II shows the total number of departures, approaches
and go-arounds identified in the study period selected for this
work. Due to the heterogeneous quality of ADS-B data source
some arrivals and departures were discarded from the final
data set, due to errors in the data (such as excessive number
of outliers, on ground segment missing or to few data points
during the approach phase). This may explain the discrepancy
in Table II between the number of arrivals and departures.
Although in the case of EDDF this discrepancy is less than
1%, in the case of EDDM it is higher due to significantly
worse data coverage especially in the ground segment.

A preliminary analysis of the final data set showed that
for EDDF and EDDM, approximately 98% of all go-arounds
are initiated after 2NM prediction point and only 1% start
before the 8NM prediction point. These results are similar
to those obtained in other studies [20]. In addition, we can
see how the ratio of go-arounds in the final data set is
very small (approximately 3.5 per 1000 operations at both
airports). This confirms that we are facing a highly imbalanced
classification problem. In machine learning terms, a data set
can be considered to be highly imbalanced when the ratio
between the majority class and the minority class is greater
than 1:100 [21]. In general, some classification models, by
their nature, perform optimally on problems where the data



TABLE I
FEATURES DEFINED FOR PREDICTION MODEL

Feature type Feature name Sampling Source Description

Flight information

WTC

Static information

Engineered feature Aircraft Wake Turbulence Category

Approach attempt Engineered feature Flight approach attempt

Hour Available in data Hour of the day

Day Available in data Day of the week

Week Available in data Week of the year

Weather data

Wind speed

Latest available METAR report at prediction

Available in data -

Wind direction Available in data -

Temperature Available in data -

Visibility Available in data -

Approach type Engineered feature Instrument Meteorological Conditions (IMC) or Visual Meteorological Conditions (VMC)

Dew point temperature Available in data Temperature below which the water will condense

Ceiling height Engineered feature Ceiling height based on sky cover altitude and metar message

Approach performance

Runway ID

Distance from the threshold (every 0.5NM from 10 NM to 2 NM from threshold)

Engineered feature Approached runway ID

Specific energy level Engineered feature Aircraft specific energy level during the approach

Ground speed Available in data Aircraft ground speed

Vertical speed Available in data Descent vertical rate

Vertical speed variance Engineered feature Descent vertical rate variance (window of 60s)

Track Available in data Aircraft track

Track variance Engineered feature Aircraft track variance (window of 60s)

Altitude Available in data Aircraft altitude

Track/Runway Bearing deviation Engineered feature Angular Deviation between aircraft track and runway bearing

Centerline deviation Engineered feature Angular Deviation of aircraft position from runway centerline

Airport information

Total go-arounds

Time horizons (previous 10, 30 and 60 minutes)

Engineered feature Total number of previous go-arounds at the airport

Runway go-arounds Engineered feature Total number of previous go-arounds at the approaching runway

Departures Engineered feature Total number of previous departures at the approaching runway

Arrivals Engineered feature Total number of previous arrivals at the approaching runway

Last departure time

Closest flight to approaching aircraft

Engineered feature Time difference with previous departure at the approaching runway

Last arrival time Engineered feature Time difference with previous approach at the approaching runway

Last departure WTC Engineered feature WTC of the previous departure at the approaching runway

Last arrival WTC Engineered feature WTC of the previous arrival at the approaching runway

TABLE II
TOTAL NUMBER OF DEPARTURES, APPROACHES AND GO-AROUNDS PER AIRPORT

Airport Number of departures Number of approaches Number of go-arounds Go-arounds per 1000 approaches
EDDM 264418 219488 773 3.52
EDDF 367861 370855 1318 3.55

set is balanced or slightly imbalanced. In these cases, it is
sometimes necessary to apply resampling techniques. This
resampling can be an undersampling (where the number of
examples of the majority class is reduced) or an oversampling
(increasing the number of examples of the minority class).
In some cases resampling is not always a solution, and both
undersampling and oversampling present their pros and cons.

In this work we have explored the use of the oversampling
technique known as Synthetic Minority Oversampling Tech-
nique (SMOTE). When using SMOTE, the minority class is
over-sampled by taking each sample from the minority class
and introducing synthetic examples along the line segments
linking any/all of the k nearest neighbors of the minority
class [22]. Together with SMOTE, and as suggested by its
authors [22], we explored combining it with a random un-
dersampling technique by which examples of the majority
class are randomly removed from the dataset. In addition,
where applicable, the use of Cost-Sensitive Algorithms has
been explored to combat the imbalance in the data by adding
an additional cost for misclassification to some of the models
developed.

To provide a more in-depth analysis of the possibilities
of using ML models to predict go-arounds, we decided to

produce an initial benchmark study where nine of the most
common types of ML models were trained in order to compare
their performance. In order to save computational effort, the
benchmark was performed by training the different models
for 4NM prediction. The models were trained with some
minor modification of their hyperparameters, as the aim is
to obtain an initial result of the most promising model and
provide a baseline for comparison. Moreover, some of the
resampling and cost-sensitive techniques were used to combat
data imbalance. Three different types of models were proposed
for study:

• Linear algorithms: Naive Bayes and Logistic Regression
• Non-linear algorithms: Decision Tree, K-Nearest Neigh-

bours and Multi-layer Perceptron
• Ensemble Models: Random forest, Adaptive boosting and

Gradient boosting
To validate the different models, we use a cross-validation

technique called K-Fold cross-validation. Cross-validation is
used to avoid typical problems in ML model development such
as overfitting or selection bias. In K-Fold cross-validation,
the data is divided into k subsets and the holdout method is
repeated k times. Each time, one of the k subsets is used as the
test data set and the other k-1 subsets are used as the training



data set. The error estimate is averaged over all k trials to
calculate the total model performance [23]. For each model of
the benchmark we use three-fold cross validation repeated 2
times.

It is crucial during the model training and stage and cross-
validation process to ensure that information from the vali-
dation data set is not used in training. When this happens it
is known as ”data leakage” and can cause overly optimistic
results and therefore invalid predictive models to be created. It
is also important to ensure that if an oversampling technique
such as SMOTE is used, it is only applied to the training data
and not to the validation data. Tables III and IV show the
results of the performance metrics (precision, recall, F1-score
and Receive Operating Characteristics-Area Under the Curve
(ROC-AUC) for the benchmark study by airport.

TABLE III
EDDM MODEL BENCHMARK STUDY RESULTS

EDDM - 4 NM
Model Precision Recall F1-score ROC-AUC

Naive Bayes
(scikit-learn) 0.06 0.29 0.10 0.76

Logistic regression
(scikit-learn) 0.67 0.15 0.25 0.80

K-Nearest Neighbours
(scikit-learn) 0.84 0.12 0.21 0.64

Decision Tree
(scikit-learn) 0.17 0.24 0.20 0.62

Multi-layer Perceptron
(scikit-learn) 0.40 0.22 0.28 0.72

Random Forest
(scikit-learn) 0.77 0.21 0.32 0.80

Adaptive Boosting
(scikit-learn) 0.70 0.18 0.29 0.82

Gradient Boosting
(XGBoost) 0.80 0.21 0.34 0.85

Gradient Boosting
(LightGBM) 0.77 0.22 0.34 0.88

Results of the benchmark study show that for both airports
the best overall performing models are the Ensemble models.
These types of models work by combining the prediction of
multiple so called simpler ”weaker” models (e.g. decision
trees) to improve their overall performance. Of the Ensemble
models tested, the one with the most complete performance
were the Gradient Boosting models. For the benchmark study
we tested several implementations of this type of model from
python libraries such as Scikit-learn, XGBoost and LightGBM.
Among these implementations we finally decided to select
LightGBM as the best suited for go-around prediction. Al-
though its performance is equivalent to the others, LightGBM
presents a more lightweight model which significantly shorter
training times compared to other ensemble models others (up
to 10 times less). LightGBM is a Gradient Boosting Deci-
sion Tree (GBDT) algorithm which combines the techniques
of gradient-based one-side sampling and exclusive feature
bundling. Unlike other GBDT algorithms, such as XGBoost,
LightGBM grows trees vertically while other algorithms grow
trees horizontally, which makes LightGBM, in certain occa-

TABLE IV
EDDF MODEL BENCHMARK STUDY RESULTS

EDDF - 4 NM
Model Precision Recall F1-score ROC-AUC

Naive Bayes
(scikit-learn) 0.07 0.42 0.13 0.84

Logistic regression
(scikit-learn) 0.74 0.22 0.34 0.82

K-Nearest Neighbours
(scikit-learn) 0.89 0.34 0.49 0.73

Decision Tree
(scikit-learn) 0.32 0.41 0.36 0.71

Multi-layer Perceptron
(scikit-learn) 0.60 0.38 0.47 0.78

Random Forest
(scikit-learn) 0.84 0.44 0.58 0.87

Adaptive Boosting
(scikit-learn) 0.62 0.23 0.34 0.88

Gradient Boosting
(XGBoost) 0.90 0.40 0.57 0.89

Gradient Boosting
(LightGBM) 0.84 0.43 0.57 0.90

sions, more effective method for processing large datasets and
features [24].

After selecting the LightGBM ensemble model as the model
for the go-around prediction tool we proceed to a more
exhaustive development. Applying the SMOTE resampling
technique, we observe that the best results are obtained when
the number of values in the minority class (go-arounds) is
increased to about 5% of the number of values in the majority
class. When combined with random undersampling and the
use of cost-sensitive penalisations, we observed a worsening
in performance. Its use caused an over-correction where the
total number of detected go-arounds (recall) increased, but at
the cost of drastically reducing the precision. For this reason,
the use of these techniques in the final models was discarded.

To optimize the prediction capacity of the LightGBM model
for both airports we proceed to optimize its hyperparameters.
Therefore, we use Bayesian hyperparameter optimization via
the Optuna library. Bayesian hyperparameter optimization
works by building a probability model of the objective function
and using it to select the most promising hyperparameters to
evaluate in the true objective function [25]. In this case the
objective function was to minimize the precision-recall (PR)
performance metrics

Finally, for the hyperparameter tuning we split the total
data set (per airport) into a ratio of 75%(training and testing)-
25%(validation). This splitting is done randomly, although the
distribution of the target variable (go-around/No go-around)
in each partition is maintained. The 75% data partition is
used to perform a Flat cross-validation optimisation of the
hyperparameters. Once the best hyperparameters are found,
they are used to retrain a final model using all the training and
testing data. The validation data partition is used to validate
the final model performance. Even though this procedure may
not be the most optimal one, it sufficiently reduces bias and
provides reliable information on model performance. Although



the use of Nested cross-validation is considered a better option
to reduce bias, there is evidence that its high computational
cost in large data-sets does not usually generate a relevant
improvement and the results are usually equivalent to using
only a Flat cross-validation [26].

V. RESULTS

A. LightGBM go-around prediction performance

Tables V and VI show the performance results of the models
for EDDM and EDDF after performing the hyperparameter
tuning. After the hyperparameter tuning, a slight improvement
in the models performance can be seen. As expected, the
model’s performance improves as we approach the runway
threshold. In the case of EDDM at the 2 NM prediction point
we can see the model has been able to correctly identify
approximately 54% of all go-arounds with only a 7% rate
of false positives. For EDDF at the 2 NM prediction point the
model correctly identifies 63% of all go-arounds with a 10%
rate of false positives.

TABLE V
LIGHTGBM PERFORMANCE METRICS AFTER HYPERPARAMETER TUNING

(EDDM)

EDDM
Prediction point Precision Recall F1-score PR-AUC

2 NM 0.9364 0.5365 0.6821 0.6574
4 NM 0.9111 0.2135 0.3460 0.3521
6 NM 0.9090 0.1042 0.1869 0.1950
8 NM 0.8462 0.0573 0.1073 0.1832

TABLE VI
LIGHTGBM PERFORMANCE METRICS AFTER HYPERPARAMETER TUNING

(EDDF)

EDDF
Prediction point Precision Recall F1-score PR-AUC

2 NM 0.9071 0.6347 0.7468 0.7330
4 NM 0.8974 0.4281 0.5797 0.5285
6 NM 0.8957 0.3150 0.4661 0.4186
8 NM 0.8764 0.2378 0.3741 0.3616

Tables V and VI show that, although the performance
increased with decreasing distance at both airports for all
prediction points, the prediction accuracy for the positive class
(Go-around) is very high (¿80%). This translates into less
false positive alarms for the ATCO. However, it is also worth
mentioning that the model is very selective in classifying the
positive cases. For example, in the case of EDDF at the 4
NM prediction point the model manages to predict slightly
less than half of the approaches that execute a go-around
(43%). In the case of EDDM, the model only manages to
predict slightly less than a quarter of the go-around approaches
(21%). In comparison with the work done previously in [13],
[14], the performance results obtained are better both in terms
of precision and recall. Compared to the work done in [15],
recall results for EDDM are similar to those in Philadelphia
International Airport (KPHL), while EDDF has a higher recall

for all prediction points. There is an improvement with respect
to precision. While in [15] a high precision (90%) is obtained
at 2 NM, there is a decrease as we move away from the
threshold (e.g. 66% precision at 6 NM). In our case we
obtain more stable precision values in both airports and for
all prediction points. This means that with our ML solution
an ATCO should expect a lower level of false alarms (false
positives) making it a more efficient and effective tool for go-
around prediction.

Fig. 5 and 6 present the Precision-Recall (PR) for both
airports. The PR curve is usually a more appropriate metric
than the ROC, because both precision and recall do not take
into account True negatives. Furthermore, the PR curve also
makes it easier to visualize the trade-off between precision
and recall. The EDDF models present a higher PR-AUC (0.36-
0.73) than the EDDM model (0.18-0.66). These results have
to be seen from a data imbalanced perspective. Given that
over 99% of the data present non go-arounds approaches, the
threshold for a classifier without skill would be around 0.003.
This means that for EDDF the classifier model is between 120
and 243 times better than a random classifier and in the case
of EDDM between 60 and 220 times better.

Fig. 5. EDDM - Precision-Recall (PR) Curve

Fig. 6. EDDF - Precision-Recall (PR) Curve



B. LightGBM explainability

A general analysis of the explainability of the developed
models is carried out in order to better understand the the inner
workings of the model, validate its performance and generate
trust in the model by the end users. For this purpose, a feature
importance ranking is performed and the results are analyzed
for the different prediction points. The feature importance is
generated using the Python library SHAP (SHapley Additive
exPlanations). SHAP is a game theoretic approach to explain
the output of any machine learning model [27]. Fig. 7 and 8
shows the SHAP ”Local explanation” plot for the 4 NM
prediction point models developed for EDDM and for EDDF.
Each point on these figures is a SHAP value for a feature
and an instance in the data. The y-axis contain the 20 most
important features for each model ordered from top to bottom
from most to least important. The x-axis shows the SHAP
value where positive values indicate that they favour a positive
prediction (go-around) and negative values favour an approach
without a go-around. Finally, the colour scale represents t the
value of the feature from low to high. Grey color features are
categorical features (e.g. WTC) which do not have an intrinsic
order in them.

Fig. 7. EDDM - Top 20 SHAP Feature importance at 4 NM

Fig. 7 and 8 show how the main features differ slightly
between the two models. The most important feature in the
EDDM model is the week of the year followed by the ground
speed (gndspeed mds) at 4NM. In the case of the EDDF
model, the week of the year is not in the top 20 and the
ground speed at 4NM is the 4th most important feature. We
can see in the case of EDDM how approaches with high values
of ground speed and vertical speed (hdot mds)are more likely
to be classified as go-arounds. For EDDF the most important
features are centerline deviation (centerline dev) at 4NM and
energy level at 4NM. In both cases it can be seen how high
values of this feature favor a prediction of a go-around. Even
with these differences, in both cases there is a preponderance
of ”Approach performance” type features.

Fig. 8. EDDF - Top 20 SHAP Feature importance at 4 NM

Especially noteworthy is the relevance of the vertical speed
and vertical speed variance (hdto mds var) features where in
both models appears repeatedly at different sampling points.
This gives an indication that the vertical speed profile that
an aircraft has during an approach is a major determining
factor in the occurrence of a go-around. We can also see
the high importance in both airports of the wind speed
features as well as ”Airport information” type features such
as the total number of go-arounds in the previous 60 minutes
(airport GA 60 mins) or runway departures in the previous
10 minutes (rwy DEP 10 mins).

For the prediction point at 2NM at both airports, the
main features are almost exclusively related to the ”Approach
performance”. This may be due to the fact that these are
generally the ones that were used in the labeling process, see
Fig. 2, and therefore are the most likely ones to influence
the model, being more relevant at distances closer to the
runway threshold. On the other hand, at 8NM for both EDDM
and EDDF ”Approach performance” features such as vertical
speed or centerline deviation are still the most important.
However, we also find a greater number of ”Weather data” and
”Airport information” features. In particular, we can highlight
ceiling height, visibility, runway departures and arrivals in the
previous 10 minutes.

VI. DISCUSSION

The work presented in this paper is a continuation of efforts
to achieve accurate predictions of go-arounds. A unique data
labelling system based on flight phase detection has been
used and a benchmark study with different ML classification
models has been performed. In addition, we have also explored
the explainability of the final ML solution developed for
transparency and to generate trust between users and tool.

An analysis of the most suitable models allowed us to
conclude that an ensemble model (LightGBM) combined with
an oversampling technique (SMOTE) gave the best results. We
obtained promising results and compared them to the current
state of art. Contrary to undersampling, oversampling does



not entail a loss of information, which given the rare nature
of go-arounds and their similarity with normal approaches we
believe is the reason for the performance of the models. The
results show an improvement of the current state of art.

Even so, the complexity of predicting these events has been
proven due especially to the large imbalance in the data (3 go-
arounds per 1000 approaches). Go-arounds are high workload
procedures in which the pilot’s decisions have a great influence
and whose information is difficult to reflect in the data used.
Also hindering performance was the limited information in
ADS-B (e.g. high level of outliers/noise, temporal resolution
or lack of information on surface movements), as well as
the limited time resolution and quality (limited to on-ground
measurements) of METAR meteorological data.

Even with all these challenges, we have been able to obtain
high precision and decent recall values for all prediction points
in both airports. Validating these results with stakeholders
shows some viability to a tool with this performance. The
level of false alarms would be very low and although not all
go-arounds are captured as they are standardized procedures,
false negatives do not pose a safety risk. However, work will
be still needed to develop the adequate risk framework models
to correctly understand how such a tool would impact the
ATCO’s decision making process.

Future work will focus in trying to improve the performance
of the developed models. To this end, we will continue to
detect and correct any possible errors in the data, explore
the development of new features as well as a performing a
feature selection during the training stages to try to eliminate
less important features that may introduce noise to the data.
Moreover, we will explore the use of more powerful deep
learning models. These models can allow us to better capture
the nature of go-arounds increasing performance at the cost of
losing some level of explainability.
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[12] Schmidt, Tim André, Houda Kerkoub Kourdali, and Jim Nixon. ”Eval-
uating process-based and crew-centred approaches to procedure design
in aviation: Workload and performance changes in go-around manoeu-
vres.” Applied Ergonomics 90 (2021): 103244.

[13] Dai, Lu, Yulin Liu, and Mark Hansen. ”Predicting Go-around Oc-
currence with Input-Output Hidden Markov Model.” In International
Conference on Research in Air Transportation. 2020

[14] Figuet, Benoit, Raphael Monstein, Manuel Waltert, and Steven Barry.
”Predicting airplane go-arounds using machine learning and open-source
data.” Multidisciplinary Digital Publishing Institute Proceedings 59, no.
1 (2020): 6.

[15] Dhief, Imen, Sameer Alam, Chan Chea Mean, and Nimrod Lilith.
”A Tree-based Machine Learning Model for Go-around Detection and
Prediction.”

[16] Bringing up OpenSky: A large-scale ADS-B sensor network for research
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