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Abstract  

The SafeOPS project aims at investigating the impact of possible artificial-intelligence-based decision-
support systems on routine air-traffic operations. The context selected for this investigation are 
missed approaches, initiated by the flight crew of a landing flight and the subsequent go-around. The 
go-around scenario has a number of uncertainties and therefore makes it an ideal candidate for the 
integration of a predictive technology to support air traffic controllers (ATCO’s) in managing aircraft in 
this situation. 

To this end, three main pillars were defined in the project to develop the solution: Operational Layer 
(OL), Risk Framework (RF) and Predictive Layer (PL). The latter, which is developed within Work 
Package 4 of the SafeOPS project, addresses all big data and AI related tasks. It focuses on two main 
objectives. The first one covering all the related actions for the creation of the necessary automated 
data pre-processing and preparation pipelines. The second focuses on the AI/ML solutions for the 
predictive analytics that will be chosen and trained with a special focus on the human interpretability 
aspect of the solution. The trained AI/ML solutions will be developed, delivering the predictive 
analytics to the Risk Framework (RF). 

This report addresses the second phase in the development process of the Predictive Layer. The report 
aims to provide the predictive results obtained through the use of the data infrastructure developed 
for the project (automated data processing pipelines responsible for the structuring, fusion, feature 
engineering and labelling of the data) for the two main ML case studies defined for go-around 
prediction scenarios. In addition, this report also includes an analysis of 
the explainability and interpretability of the results obtained from the models in order to make the 
models transparent and to generate trust between the model’s performance and the possible human 
users.  
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1 Introduction 

1.1 Project overview 

SafeOPS investigates the impact of possible artificial-intelligence (AI) based decision-support 
systems on routine air-traffic operations. Thereby SafeOPS focuses its research on “from prediction 
to decision”, a common decision-making paradigm in digitalization and predictive analytics. The 
envisioned decision support concept can be summarized by expanding the current ATM system with 
an information automation-based decision intelligence. Information Automation describes the 
automated acquisition and processing of operational performance data through big data technologies 
and AI algorithms, providing new information to the ATM systems. 

The scenario selected in SafeOPS for this investigation is the go-around performed by landing aircraft 
and the subsequent missed approach procedure. The go-around scenario, which scope is defined in 
Deliverable 2.1 [1], for this project, has a number of uncertainties and safety critical factors associated 
with it, which are discussed in more detail in Deliverable 3.2. It is therefore an ideal candidate for 
studying the integration of a predictive technology, with the aim of providing greater support to Air 
Traffic Controllers (ATCOs). For the selected go-around scenario, the project develops and provides an 
integrated model of risk, incorporating all potential uncertainties. The model allows discussing safety 
scenarios in a coherent, probabilistic approach. It will include historical aircraft, weather and traffic 
data, and the outcome of AI/ML models. The computed risk is added information, which flows into the 
planning and operational management of the overall ATM system. Using this approach, potential risks 
could be actively managed. 

The question the SafeOPS project looks to answer is, how the nature of these information will change 
the way the system, in this case the tower controller’s approach and go-around handling, is operated. 
Beyond "information overflow", human operators using AI/ML systems will have to adapt not just to 
more information, but especially to the probabilistic nature of this information. While very powerful, 
many AI/ML solutions are far from being deterministic as they use of randomness during 
learning.  Although this may seem negative, it allows algorithms to avoid getting stuck and to achieve 
results that deterministic algorithms cannot achieve. On the contrary, users will have to understand 
and interpret (to a greater or lesser extent) correctly the probabilistic nature behind these 
systems. Clever HMI refinements will certainly help to mitigate the potential overflow of information. 
However, also research on the impact of information automation on the ATM system needs to be 
conducted. It must show that an increase of capacity and cost-efficiency can be achieved and also the 
resilience of the system is maintained or further improved. SafeOPS aims to foster a collaborative 
paradigm that involves both the world of ATM and the world of airline operations to identify possibly 
hidden safety risks. 

The work presented in this deliverable focuses on the more technical side of the project. It builds on 
previous work done in the project, mainly:  

• Investigate concepts for the integration of AI/ML based decision support tools in ATM, and 
evaluate the effects on capacity safety and resilience of the ATM operation. Several potential 
Use Cases were identified for a data-driven decision support tool in the go-around scenarios. 
This work can be found in Deliverable 2.1 of SafeOPS [1]. 

https://www.sesarju.eu/
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• Human Factors assessment of risk information provision, following a user centric approach 
to the design on how to adequately provide real time information of different ML solutions to 
the end users. This work can be found in Deliverable 3.3 of the project [2]. 

• The development of a complete data pipeline and initial AI/ML solution assessment for the 
prediction of go-arounds scenarios using available operational (ADS-B) and weather (METAR) 
data. This work can be found in Deliverable 4.1 of the project [3]. 

1.2 Deliverable objective 

This is the second deliverable of Work Package 4 (WP4) of the SafeOPS project. The overall objective 
of this work package is to perform all the technical tasks related to the development of an AI/ML 
solution (Predictive Layer). The overall objective of this deliverable is to provide the final predictive 
results of the developed ML models as well as an analysis on the interpretability of the models 
themselves in order to provide some transparency on how they work. The results will presented of an 
update of the model developed in the deliverable 4.1 [3] after correcting some errors detected in the 
data processing and the creation of new features as well as an extension where the prediction is now 
performed for different threshold distances (2NM, 4NM, 6NM and 8NM). In addition, results are also 
presented for the second ML case study (ML_CS_02) where the prediction is performed continuously 
at fixed time intervals during the final approach phase. For both cases, an analysis of the 
interpretability and explainability is carried out, identifying the main factors identified by the models 
for the prediction of go-arounds. Finally, an analysis of all the work done in WP4 is carried out and, in 
particular, assess how our developed ML solutions meet the requirements set out in the early stages 
of the project in WP2 [1]. 

1.3 Deliverable structure 

The present deliverable includes the following sections: 

• Section 2 contains an introduction to the idea of Interpretability and Explicability with regards 
to development and deployment Machine learning solutions; 

• Section 3 contains a review of the final performance results of the machine learning solutions 
developed for the proposed case studies in the project; 

• Section 4 provides a in-depth analysis of the interpretability of the developed solutions 
through the use of different interpretability techniques; 

• Section 5 contains the main conclusions extracted from the work done in WP4 as well as 
review of the fulfilment of requirements defined in WP2 for the technical solution. 
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2 Interpretable Machine Learning 

2.1 Interpretability in Machine Learning 

The advances of Digitalisation enables the possibility of exploiting the advances made in recent 
decades in Artificial Intelligence to try to tackle situations that previously, due to their complexity, 
were only reserved for humans. Machine Learning models are revolutionising different industries and 
their usefulness is indisputable. But with their entry into service, one of the questions that has arisen 
the most is: How is the model doing what it’s doing? That is why Explainability and Interpretability 
have become some of the most explored topics in AI in recent years, coining the term Explainable AI 
(XAI). Interest has arisen that the development of ML solutions should not only validate their 
performance, but also include some kind of interpretability/explainability analysis to build trust 
between the models and their users, especially when used in critical decision-making tasks. 

Due to their nature, Go-arounds are high-workload situations and thus we consider it important in 
SafeOPS that any technical solution developed should dedicate an effort to analyse and study the 
interpretability/explainability of the models developed. As a way not only to understand which 
variables affect more in the prediction but also to generate confidence and trust in the tool on the 
part of the ATCOs. 

Why is interpretability/explainability important? To answer this question, we must first define what 
we mean by each of these concepts. Although commonly used in the literature in equivalent terms 
due to their vagueness, but sometimes these terms do not refer to the same thing. Interpretability can 
be defined as the ability of a model to be transparent and be able understand the cause and effect 
within while explainability the ability of a model to provide the user some level of explanation for its 
predictions [4]. In SafeOPS, we have preferred to use the definition of interpretability as the degree to 
which a human can understand the cause of a decision and equate both terms in the sense that they 
both refer to the ability to provide information about the predictions made by a ML model [5]. 

One can often argue that the interpretability of the model is not always important and this is indeed 
the case. Interpretability is always desirable but not necessary. This gives rise to the Interpretability-
Accuracy Trade-off. The most common belief being that those models with greater interpretability 
tend to perform worse than what we could call "black box" models (models which, in general, cannot 
be understood simply by looking at their parameters). In general, there will be situations where the 
predictions of a ML model are not used in critical scenarios (e.g., movie recommendation systems). In 
these cases, we may be more concerned with performance than interpretability as any erroneous 
predictions will have relatively low cost. But there are many safety-critical scenarios, such as in this 
case of go-arounds, where this trade-off must be re-evaluated. In these situations, it may be of interest 
or necessity for the human user using the prediction to have some information about the causes of 
this prediction. To make decisions accordingly or if necessary to discard any misleading predictions.  
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2.2 Model interpretability 

There are a number of techniques and tools designed to provide explanations to ML models. These 
different methods of interpretation can be broadly classified according to the results we obtain from 
[6]: 

• Feature analysis: Most modern algorithms (e.g., ensemble models) can provide certain 
summary statistics for each feature. This can range from a single metric related to importance 
to more elaborate metrics, such as pairwise feature interaction strength. In addition, it is 
sometimes required to visualize feature statistics for their correct interpretation. One example 
is "Partial dependence plots" which are curves that show a feature and the average predicted 
outcome.  

• Data point: There are interpretation techniques that rely on the analysis of data points 
(existing or synthetic) to explain the performance of a model. An example is the method of 
counterfactual explanations, whereby a data point similar to the one of interest is created and 
some of the features are modified to find those that cause the change in prediction. 

• Model internals: As mentioned previously, there are some types of models that by their nature 
are considered intrinsically interpretable. From these it is possible to extract information 
directly from them such as for example the weights in linear models or the learned tree 
structure of decision trees.  

• Surrogate models: This technique approximates the behaviour of a complex model by using a 
more interpretable model. The interpretable model can be interpreted by looking at the 
internal parameters of the model or through its summary statistics of the features. 

Furthermore, in terms of interpretability we must also distinguish between Model-specific vs Model-
agnostic and Global vs Local interpretation methods. Model-specific techniques are specific to a single 
type of ML model. They rely on the nature and model internals to provide explanations for specific 
predictions. Model-agnostic techniques are those that can be used in any ML model and are applied 
after the model has been trained. Generally, these agnostic methods work by analysing pairs of input 
and output features. Model-agnostic techniques are the most versatile techniques for interpretability 
of ML models as they are not restricted to the nature of a model. In the following we will look at some 
of the most popular techniques for this type of models.  

Global Model-agnostic techniques. These techniques focus on the features that have the most impact 
on all of the model’s target outcome. Overall, it provides a high-level understanding of how the model 
works and its decision-making.  It can be useful not only to provide general interpretability to 
stakeholders but can also help the analysts understand the model in the development phases and 
assist in the feature selection. Some examples of the most common global model-agnostic techniques 
are: 

• Partial Dependacy Plots (PDP): This technique explains the global behaviour of a model by 
showing the relationship of the marginal effect each feature has on the predicted outcome of 
the model. The plot shows whether the relationship between the target and a feature variable 
is linear, monotonic or more complex. This technique works on the basis that the features of 
the model are independent and uncorrelated with each other. 

• Feature interaction: This technique allows us to interpret the model as the sum of the 
interaction of the features in the prediction. An example is the H-statistic by which the strength 
of the interaction is estimated by measuring how much of the variation in the prediction 
depends on the interaction of certain features. 
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• Individual Conditional Expectation (ICE): This technique is an extension of PDP which allows 
us to explain heterogeneous relationships. While PDP supports explanations of two 
characteristics, ICE we can only explain one characteristic at a time. 

• Permuted Feature Importance: This technique establishes the significance of the features by 
measuring the increase in the prediction error of the model after permuting the feature values, 
thus breaking the relationship between the feature and the true outcome. 

• Global surrogate models: This technique uses an interpretable model which is trained to try 
to approximate the predictions of a black box model. Through this interpretable model we can 
extrapolate conclusions about the black box model. The use of surrogates provides flexibility 
as it allows us to use different types of interpretable models depending on our needs. The 
main disadvantage is that the surrogate model draws conclusions from the black box model 
and not from the actual data. 

Local Model-agnostic techniques. These techniques focus on providing specific interpretability on 
individual predictions of the model. In the case of SafeOPS, local model-agnostic interpretability can 
be useful in providing real-time information to an ATCO about why the model is predicting a go-around. 
It can provide valuable additional information to the ATCO to better assist the flight crew and enable 
more effective and efficient decision-making. In addition, the local interpretability of the model is 
important for models that are deployed in regulated industries such as aviation. It allows to perform a 
kind of audit of the model and provide justification as to why a certain prediction was made. Some 
examples of the most common local model-agnostic techniques are: 

• Local Surrogate models (LIME): These techniques are based on the use of local surrogate 
models to explain the individual predictions of the black box machine learning model. Local 
interpretable model-agnostic explanations (LIME) is a specific application of the local surrogate 
models [7]. LIME focuses on training local surrogate models to explain individual predictions. 
Lime works by analysing how predictions change when variations of the input data are 
introduced into the model. It generates a new sample dataset consisting of perturbed samples 
and the corresponding predictions. On this sample dataset LIME then trains an interpretable 
model. The weights from the interpretable model are then used to provide explanations for 
the black box's local behaviour. 

• Shapley Values: The Shapley value is a solution concept in cooperative game theory [8]. In game 
theory, we can define a player's Shapley value as the player's average marginal contribution in a 
game’s payoff. In ML interpretability, the players of this cooperative game are replaced by the 
features of the ML model and the payoff by the model output. The Shapley value of a feature for 
a specific data point explains the contribution of the feature to a prediction at the specified data 
point. One of the advantages of using Shapley values is that it does not require access to the 
internals of the model but just requires the model as a predictor. The main disadvantage is that the 
calculation of shapley values is computationally expensive.  

2.3 Human-interpretability 

In recent years, human-interpretability has been raised of the importance of human-interpretability in 
the possible ML models to be used in ATM. With black box models ATM operators tend to not know 
"why" or "how" a certain prediction has been made decreasing their trust in the ML solution.  Making 
AI interpretable has been identified as of key importance to ensure trust and reliability in the 
interaction between humans and AI-based systems. For this reason, several projects have been 
financed to research and advance interpretability in ATM systems. Among these projects we highlight 
the following: 
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• ARTIMATION: The goal of this project is to provide a transparent and explainable AI model 
through the use of different techniques. This project seeks to leverage human perceptual 
capabilities to better understand the AI algorithm with appropriate data visualisation in 
support of explainable AI (XAI), exploring in the field of ATM the use of immersive analytics to 
display the information [9]. 

• TAPAS: The project aims to investigate a systematic exploration of AI/ML solutions to increase 
levels of automation in specific ATM scenarios. Through different analysis and 
experimentation activities it aims to provide principles of transparency to enable the 
application of AI supported automation in ATM [10]. 

• MAHALO: This project investigates the impact on acceptability and performance of two 
different approaches: AI explainability and conformity of solutions proposed by AI. To do so 
the project is carrying out simulations with ATCOs testing a conflict prediction and resolution 
tool based on AI trained to maximise specific parameters (e.g. mileage, fuel consumption) and 
on AI trained to mimic real ATCOs behaviour [11]. 

• AISA: This project focuses on the effect of automation tools on the level of situational 
awareness of ATCOs. The project explores the domain-specific application of transparent and 
generalisable artificial intelligence methods [12]. 

Based on the work done by this research as well as research in other industries [13], we can highlight 
the different types of properties that different ML interpretation techniques can have as well as the 
criteria that establish what good interpretation technique is. Starting with the properties, we can 
identify the following ones: 

• Expressive power: Refers to the type of information extracted from the interpretation 
technique. For example, decision trees or different weighted sums.  

• Translucency: Refers to the degree in which an interpretation relies in looking in the inner 
workings of a model. Intrinsically interpretable models are considered highly translucent. 
Interpretation techniques that rely solely on analysing the inputs and outputs of the model are 
considered as low translucency. 

• Portability: Refers the range of different ML models to which an interpretability technique can 
be used. Generally, low translucency techniques tend to have a higher portability. Surrogate 
models are considered to be the interoperability technique with the highest degree of 
portability. 

• Algorithmic complexity: Refers to the computational cost of the interpretability technique.  

Turning now to the factors that determine the quality of an explanation, we distinguish: 

• Accuracy: The degree to which an interpretation technique generalises to unseen data.  

• Fidelity: The extent to which the interpretation approximates the prediction of the black box 
model. this is one of the most important properties of any interpretation technique. If a black 
box model has high accuracy (performance) and the explanation has high fidelity, we can say 
that the explanation also has high accuracy. 

• Comprehensibility: The degree to which the explanation of an interpretability technique is 
readily understandable to humans. This is one of the key elements of any explanation but one 
of the most difficult to measure. It is highly dependent on the user's operational knowledge 
and understanding of how ML solutions work.  

• Certainty: Some ML models allow not only to make a prediction but also to provide some 
metric on the level of confidence in that prediction. It is generally it is preferable to use models 
and interpretability techniques that provide information on the uncertainty of a prediction.  
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• Degree of importance: To what extent the explanation reflects the importance of the features 
or parts of the explanation. 

• Novelty: This concept is related to that of certainty. The greater the novelty, the more likely it 
is that a model will have low certainty due to lack of data.  

• Representativeness: How many instances an explanation covers. As we have seen, 
explanations can cover the whole model (global) or represent only an individual prediction 
(local). 

Taking all this into account, we can define from a human point of view what characterises a good 
explanation [5]. Human users generally prefer explanations that are contrastive. They are not so much 
interested in the explanation of a given instance as in being able to compare it with others and to 
establish how and why the prediction varies from one to another. In addition, ML models often use 
many features but the human user is not able to understand them all. So, a good explanation should 
be simple and provide a small number of key factors that affect a prediction. As mentioned before, 
the user's background must also be taken into account. Both technical and operational background 
must be understood when choosing how to present the explanations of a model in such a way that 
they are easily interpretable. Similarly, users' prior beliefs should be taken into account in 
explanations. A balance should always be sought between these prior beliefs and the model's 
operation. Results that go completely against the prior beliefs may generate distrust in the tool even 
if the performance is good but only focusing on them may prevent the discovery of new possible causes 
that were not taken into account before. Furthermore, there tends to be a greater interest in 
understanding the extreme cases or outliers as these are the ones that can have the greatest effect 
on trading. In many cases, the explanation should focus more on these extreme cases both from the 
perspective of the predictions and the features involved. Finally, the explanation should, as far as 
possible, seek fidelity, always in balance with the other desired objectives. 
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3 Case studies predictive results 

3.1 Machine Learning Case Study 1 (ML_CS_01) - LightGBM model 

This section presents an updated version of the ML model developed in deliverable 4.1. For this new 
version, some modifications have been made especially in the correction of detected errors, new 
features have been created, a feature selection has been made and again the hyperparameters of the 
model have been fine tuned. Furthermore, compared to the previous model, it has been extended to 
make predictions at different distances from the threshold (2NM, 4NM, 6NM and 8NM), thus providing 
additional levels of information to the ATCO. A more detailed description on the definition of this ML 
case study can be found in section 4 of deliverable 4.1 [3]. 

3.1.1 Data preparation and feature engineering updates 

Error detection and correction. After a review of the results of the first version of the ML model and 
during subsequent EDAs (Exploratory Data Analysis), some errors in the data were discovered, that 
weren't picked up previously in the data preparation and processing pipeline. The main errors detected 
were:   

• On ground sensor: The sensor data indicating whether the aircraft is on the ground or not is 
of very poor quality and very noisy. Although initially during the processing pipeline outliers 
are detected and eliminated, it was found that even on some occasions they still showed some 
kind of error. This caused, among other things, the runway to be misidentified and the aircraft 
landing time to be detected erroneously. The process of identifying and correcting outliers was 
redesigned and additional filters were added which consider that if a flight contains too many 
errors it should be discarded completely.  

• Multiple flights with same callsign: One of the main assumptions in the processing pipeline 
was that over the course of a day there would only be unique callsigns for single flights. This is 
not always true and in cases where there are several flights for the same airport with the same 
callsign it can create flights with false or inaccurate parameters. Therefore, a flight splitting 
step has been established based on the timestamp of the data for the same callsign. As soon 
as a difference between timestamps of more than one hour is detected, the next part of the 
flight is considered as a new flight. Thus, establishing unique IDs per flight based on the date, 
the callsign and the splitting performed. 

After correction, the raw data was passed back through the automated processing pipeline and a new 
final dataset was generated. Table 1 shows the new total number of departures, approaches and go-
arounds identified in the period studied (2018-2020). It can be seen that although the total number of 
flights (departures and arrivals) has increased compared to the previous data set, see Table 2, there 
has been a decrease in the total number of go-arounds. This indicates that due to these errors the total 
number of go-arounds in the data was being overestimated, so it is likely that initial performance 
results were overestimated.  
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Table 1. New release of data: Number of approaches and go-arounds ML_CS_01 

Airport Number of approaches Number of go-arounds Go-arounds per 1000 
approaches 

EDDM 227044 646 2.85 

EDDF 377712 1237 3.27 

 

Table 2. Previous data release: Number of approaches and go-arounds ML_CS_01 

Airport Number of approaches Number of go-arounds Go-arounds per 1000 
approaches 

EDDM 219488 773 3.52 

EDDF 370855 1318 3.55 

 

New features. After several workshops with the ATCOs it was decided to explore the possibility of 
creating additional new features that could provide more operational information to the model. In 
total 6 new features were defined which can be seen in Table 3. For each point of the trajectory the 
cross-wind and head/tail-wind components were engineered using the available aircraft heading in 
ADS-B data as well as the wind speed and direction present in the METAR reports. The pseudo 
difference in depth of modulation (ddm) of the ILS signal was also calculated using the position 
information (latitude and longitude) of the aircraft as well as the altitude corrected with the QNH. The 
glideslope data for each runway were obtained from open sources. Finally, using the ADS-B 
information for each approach, it is identified if there is an aircraft in front of it and if this aircraft is in 
the approach phase or on the runway performing a take-off. In case there is an aircraft in front, closing 
time is engineered using the ground speed and heading of both aircraft as well as the haversine 
distance between them. 

𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑡𝑖𝑚𝑒(𝑠) =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑉1 ∗ 𝑐𝑜𝑠(𝑏𝑟𝑔 − ℎ𝑑𝑔1) − 𝑉2 ∗ 𝑐𝑜𝑠(𝑏𝑟𝑔 − ℎ𝑑𝑔2)
 

Where: 

• V = Aircraft grounds speed (m/s); 

• brg = Bearing between the two aircrafts (degrees); 

• hdg = Aircraft track (degrees); 

• distance = Haversine distance between aircrafts (m); 

The formula is illustrated in Figure 1. It is important to mention that the formula only covers the closing 
time in a two-dimensional plane and does not regard vertical separation of aircraft. 
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Figure 1: 2D Closing time 

Table 3. New added features 

Feature type Feature name Sampling Source Description 

Weather data Cross-wind Distance from the 
threshold 

Engineered 
feature 

Cross-wind component 

Head/Tail-wind Engineered 
feature 

Head or tail wind 
component 

Approach 
performance 

Localizer ddm Distance from the 
threshold 

Engineered 
feature 

Pseudo localizer difference 
in depth of modulation 

Glideslope ddm Engineered 
feature 

Pseudo glideslope 
difference in depth of 
modulation 

Airport 
information 

Aircraft in front Closest available 
flight information 

Engineered 
feature 

Aircraft in front (approach, 
departure or none) 

Closing time Engineered 
feature 

2D Closing time in seconds 
with preceding approach or 
departure if any 

 

Hyperparameter tuning. This process is carried out in the same way as for the first version of the 
model. We used a Bayesian optimisation for the hyperparameter tuning through the Optuna python 
library. For the hyperparameter tuning we decided to split the total data set (per airport) into a ratio 
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of 80%-20%. The distribution of the target variable (go-around/No go-around) in each partition was 
maintained. The 80% partition was then used to perform a cross-validation Bayesian optimisation of 
the hyperparameters. In this case as an optimisation metric, we decided to use the Average Precision 
(AP) from prediction scores. AP summarises the Precision-Recall curve as the weighted average of the 
precision achieved at each threshold, with the increase in recovery from the previous threshold used 
as the weight ( [14] sklearn.metrics.average_precision_score). 

𝐴𝑃 = ∑
𝑛
(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛 

Where Pn and Rn are the precision and recall at the nth threshold. We decided to use this as the 
evaluation metric because it attempts to maximise the precision/recall ratio with the aim of having a 
model that can correctly identify all positive examples (go-arounds) and at the same time minimise the 
classification of negative examples as positive ones (false alarms). Once the best hyperparameters are 
found, they are used to re-train a final model. Finally, the 20% partition was used to validate the final 
model performance. Although this procedure is not the most optimal, it sufficiently reduces the bias 
and provides reliable model performance information. Other procedures, such as nested cross-
validation, can further reduce bias but at a high computational cost.  

Feature selection is the process by which the number of input variables is reduced when developing a 
predictive model. It is generally considered beneficial to reduce the number of input variables both on 
the one hand to reduce the computational cost of modelling and on the other hand, in some cases, to 
actually improve the performance of the model by eliminating non-informative or redundant features. 
Ensemble models such as the one used (LightGBM) are quite robust in terms of non-informative or 
redundant features being able to internally select the best features. However, it has been considered 
useful to introduce a feature selection process especially for the interpretability of the model. A 
smaller number of features will help us to better identify the most important features involved in 
predicting whether an aircraft performs a go-around or not. The feature selection process uses the 
training dataset from the 80%-20% split to ensure that no data is leaked from the validation set to the 
training phase of the model. The reduced data set is then through k-fold cross-validation is trained 
using LightGBM model (without hyperparameter tuning). For each fold, the feature importance 
ranking is obtained using SHAP values and at the end averaged over all the folds. A subset of the 
features with the lowest average impact on the model is eliminated. This process is repeated until the 
performance AP score becomes significantly worse than the best one achieved through all previous 
iterations. Finally, the data reduced dataset is then hyperparameter tuned. 

3.1.2 Predictive results 

Table 4 shows the models performance for EDDM for all established prediction points as well as for 
the model with and without feature selection enabled. Compared to the initial version of the model 
(SafeOPS D4.1 [3]), we can see that there has been a slight decrease in overall performance. This 
supports the idea that the errors detected in the data were generating anomalous flights considered 
as go-arounds that the model was identifying correctly. Even so, the performance of the model can be 
considered as good, especially considering the unbalanced nature of the data. It can also be seen as 
expected that the closer to the runway threshold the better the performance of the models, with a 
gradual decrease in performance as we move away. The best performance results are obtained at 2NM 
and where we are able to detect 34% of all the go-arounds but with a precision of 88%. This means 
that although most go-arounds are not detected for those that are, the model presents a high 
confidence in the prediction. This translates significantly into a low level of false alarms which would 
be a distraction and annoyance for ATCOs. We can see that for the prediction points at 6NM and 8NM 
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the total number of go-arounds detected is below 10%, although in a positive way it can be seen that 
in both cases there is a high precision, 91% and 70% respectively. Again, seeing how the model 
prioritises minimising the number of false alarms. In the models where an initial selection of features 
is applied, it can be seen that equivalent performance values can be obtained. In the case of the 2NM 
prediction point, it can be seen that with only 22 (less than a quarter) features an equivalent 
performance can be obtained, allowing the possibility of using a lighter and simpler model which will 
be easier to interpret.  

Table 4. ML_CS_01 EDDM model results 

EDDM 

All features results 

Number of 
features 

Prediction 
point 

Go-around Precision Recall F1-score ROC-
AUC 

PR-
AUC 

152 2 NM True 0.8800 0.3411 0.4916 0.8908 0.4598 

False 0.9981 0.9999 0.9990 

122 
 

4 NM 
 

True 0.8710 0.2093 0.3375 0.7210 0.2413 

False 0.9977 0.9999 0.9988 

96 6 NM True 0.9091 0.0775 0.1429 0.6551 0.1243 

False 0.9974 0.9999 0.9987 

66 8 NM True 0.7000 0.0543 0.1007 0.6826 0.1032 

False 0.9973 0.9999 0.9986 

Feature selection results 

Number of 
features 

Prediction 
point 

Go-around Precision Recall F1-score ROC-
AUC 

PR-
AUC 

22 2 NM True 0.8235 0.3256 0.4667 0.8475 0.4301 

False 0.9981 0.9998 0.9989 

102 4 NM True 0.8667 0.2016 0.3270 0.7690 0.2447 

False 0.9977 0.9999 0.9988 

66 6 NM True 0.8889 0.0620 0.1159 0.6548 0.1265 

False 0.9973 0.9999 0.9987 

36 8NM True 0.6363 0.0543 0.1000 0.6700 0.0992 

False 0.9973 0.9999 0.9986 

 

Table 5 shows the models performance for EDDF for all established prediction points as well as for the 
model with and without feature selection enabled. Like for EDDM we can see that compared to the 
initial version of the model (SafeOPS D4.1 [3]), there has been a slight decrease in overall performance. 
However, for the prediction point at 2NM in the EDDF case, the model is able to detect 40% of all go-
arounds with high precision 89%. Compared to EDDM at the 6NM and 8NM prediction points in the 
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worst case the model is able to predict up to 15% of all go-arounds. It can also be seen that for the 
different prediction points a high level of precision is maintained ensuring that the model has low 
number of false alarms. The use of the feature selection method has also allowed the generation of 
simpler and lighter models with similar performances. In the case of the 2NM prediction point, the 
model with less than half of the available features is able to detect 37% of all go-arounds with a 89% 
precision. As discussed above, this helps us to reduce the noise input into the model from non-value 
adding features and facilitates subsequent interpretability. An analysis of the interpretability of the 
models (EDDM and EDDF) through the feature importance feature importance ranking can be found 
in the next section (section 4). 

Table 5. ML_CS_01 EDDF model results 

EDDF 

All features results 

Number of 
features 

Prediction 
point 

Go-around Precision Recall F1-score ROC-
AUC 

PR-
AUC 

152 2 NM True 0.8850 0.4049 0.5556 0.8448 
 

0.4511 

False 0.9980 0.9998 0.9989 

122 4 NM 
 

True 0.9118 0.2510 0.3937 0.7495 0.2976 

False 0.9975 0.9999 0.9987 

96 6 NM True 0.7846 0.2065 0.3269 0.7096 0.2320 

False 0.9974 0.9989 0.9986 

66 8 NM True 0.9024 0.1498 0.2569 0.6776 0.2024 

False 0.9972 0.9999 0.9986 

Feature selection results 

Number of 
features 

Prediction 
point 

Go-around Precision Recall F1-score ROC-
AUC 

PR-
AUC 

62 2 NM True 0.8846 0.3725 0.5242 0.8559 0.4512 

False 0.9979 0.9998 0.9989 

112 4 NM True 0.8611 0.2510 0.3887 0.7989 0.3119 

False 09975 0.9999 0.9987 

86 6 NM True 0.7937 0.2024 0.3225 0.7320 0.2367 

False 0.9974 0.9998 0.9986 

46 8NM True 0.7647 0.1579 0.2617 0.6867 0.1896 

False 0.9972 0.9998 0.9985 
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3.2 Machine Learning Case Study 2 (ML_CS_02) - Predictive results 

This section presents the ML model developed for the second defined case study (ML_CS_02). Initially, 
this ML solution was intended to provide predictions every "x" number of seconds. Eventually it was 
decided to re-define the continuous prediction as the possibility to make predictions at constant 
intervals of distance from the runway's threshold.  Primarily to maintain consistency and allow 
comparison with ML_CS_01 and secondly to facilitate the development of the neural network based 
solution. A more detailed description of the definition of this ML case study can be found in section 4 
of deliverable 4.1 [3]. 

3.2.1 Data preparation and Feature engineering 

Redefining the problem so that predictions are made at periodic distance intervals allowed us to take 
advantage of the infrastructure and automated data pipelines already developed for ML_CS_01. We 
decided to use the 0.5NM sampling for this case study. This means that for an aircraft flying at an 
average speed of 60-90 m/s in the final approach phase the ATCO can expect a prediction 
approximately every 15-10 seconds giving a high level of granularity in the results. The Long Short 
Term Memory (LSTM) is a type of recurrent neural network (RNN) which uses sequential (or time 
series) data. This type of model is very powerful as it is often able to automatically extract features 
from past events. The main peculiarity of LSTMs is that they are a bit more demanding than other 
models in terms of data preparation and formatting. In contrast to models such as LightGBM which 
uses tabular format data (number of samples x number of features) an LSTM model requires a 3D 
matrix with the following form: 

• Samples: refers to the total number of observations fed into the LSTM. In this case, the series 
has one observation every 0.5NM for every approach 

• Sequence: refers to the past data window the LSTM has access to make a prediction. 

• Features: number of data columns selected as potential features. 

As for the features used, a prior selection of features had to be made for the case study. Table 6 shows 
the final list of features used. Unlike LightGBM; LSTMs are very sensitive to the type of data and format 
that is entered as a feature. It doesn't handle categorical features naturally so these must be encoded. 
There are several techniques such as One-hot-encoding or Ordinal encoding. After exploring them it 
was decided that none of them were suitable for our data and that any type of encoding could 
introduce noise to the model. It was therefore decided to remove these from the final list of features. 
Therefore, only numerical features were used. In addition, certain features such as "Airport 
information" are calculated for the specific prediction point. In this case and with a dynamic prediction 
point it means that they would require to be calculated for all possible distances. These will introduce 
a high computational cost so they were also discarded. Finally, the selection is focused on the 
"Approach performance" features that as seen in ML_CS_01 (see section 4) are the generally the most 
relevant in the prediction at 2NM, 4NM, 6NM and 8NM. Finally, the LSTMs do not handle varying 
ranges in feature values, so a Standard scaler was applied which standardize features by removing the 
mean and scaling to unit variance ( [14] sklearn.preprocessing.StandardScaler). 
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Table 6. ML_CS_02 Description of features 

Feature type Feature name Sampling Source Description 

Flight 
information 

Approach attempt Static Engineered 
feature 

Flight approach attempt 

Hour Available in data Hour of the day 

Day Available in data Day of the week 

Week Available in data Week of the year 

Weather data Wind speed Nearest 
available 
METAR 
report 

Available in data Measured wind speed 

Wind direction Available in data Measured wind direction 

Temperature Available in data Measured Temperature 

Visibility Available in data Measured visibility 

Dew point 
temperature 

Available in data Based of the lowest 
clouds that cover more than 
half of the sky relative to 
the ground 

Ceiling height Engineered 
feature 

Based of the lowest 
clouds that cover more than 
half of the sky relative to 
the ground 

Cross-wind Every 0.5NM 
from runway 
threshold 

Engineered 
feature 

Cross-wind component 

Head/Tail-wind Engineered 
feature 

Head or tail wind 
component 

Approach 
performance 

Specific energy level Engineered 
feature 

Aircraft specific energy level 
during the approach 

Ground speed Available in data Aircraft ground speed 

Vertical speed Available in data Descent vertical rate 

Vertical speed 
variance 

Engineered 
feature 

Descent vertical rate 
variance (window of 60s) 

Track Available in data Aircraft track 

Track variance Engineered 
feature 

Descent vertical rate 
variance (window of 60s) 

Altitude Available in data Aircraft altitude  

Track/Runway 
Bearing deviation 

Engineered 
feature 

Angular Deviation between 
aircraft track and runway 
bearing 

Centerline deviation Engineered 
feature 

Angular Deviation of aircraft 
position from runway 
centerline 
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Localizer ddm Engineered 
feature 

Pseudo localizer difference 
in depth of modulation 

Glideslope ddm Engineered 
feature 

Pseudo glideslope 
difference in depth of 
modulation 

Distance Engineered 
feature 

Haversine distance to 
threshold in nautical miles 

 

3.2.2 Long Short-Term Memory (LSTM) model 

Recurrent Neural Networks (RNN) are a special kind of neural networks specially design to work with 
sequence/temporal data. RNN neurons work by having a cellular state/memory, and the input is 
processed according to this internal state, which is achieved with the help of loops with in the neural 
network, see figure 2. LSTM networks are a type of RNN capable of learning order dependence in 
sequence prediction problems. A RNN/LSTM network layers can be designed in a multitude ways which 
can impact how features are learned and extracted from the data. Among the different types of layers, 
the most important are usually: 

• LSTM: RNN layer that works with sequential data and is able to learn features of events from 
long to short time data.  

• Dropout: This consists of randomly setting a fraction rate of input units to 0 at each update 
during training phase. It is useful to try and prevent overfitting of the model. 

• Dense: A layer with all its neurons are connected to every neuron of its preceding layer. 
Neurons of the dense layer perform matrix-vector multiplication. 

Due to the ability of LSTMs to work with sequences it is believed to be well suited to our case study. 
The architecture of the RNN/LSTM has been designed from scratch, iterating and adjusting the hyper 
parameters of the network and its design to adequately minimise the maximum loss error. Finally, it 
was decided to set the amount of information passed to the LSTM from past observations to be 4 data 
points (previous 2 NM). 

 

Figure 2: Basic LSTM Layout from [15] 
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3.2.3 Predictive results 

Initially and in order to validate the possibility of using a LSTM network for go-around prediction, we 
trained a LSTM network to perform 2NM threshold predictions for EDDM and EDDF and compared it 
with the results obtained using the hyperparameter tuned LightGBM model. The results of this 
validation can be seen in Table 7 and Table 8. We can see that with a LSTM network without any 
unbalanced data handling techniques (e.g., under or over sampling) and with a total number of 26 
features we achieve very similar performance results to those of the LightGBM models. This validates 
the idea of the possibility of using such networks for gait prediction. 

Table 7. EDDM - LSTM validation 2 NM 

EDDM 

Prediction point ML model Precision Recall ROC-AUC PR-AUC 

2 NM LightGBM 0.88 0.33 0.89 0.46 

LSTM 0.85 0.35 0.76 0.45 

 

Table 8. EDDF - LSTM validation 2 NM 

EDDF 

Prediction point ML model Precision Recall ROC-AUC PR-AUC 

2 NM LightGBM 0.89 0.41 0.84 0.45 

LSTM 0.92 0.42 0.79 0.50 

 

We then proceed to develop for EDDM and EDDF a global prediction model based on LSTMs. This 
model will be able to generate predictions every 0.5NM from 8NM to 2NM from the runway threshold. 
For this purpose, for each flight, sequences are generated every 0.5NM in which information relating 
to the last 2 NM is included. For example, at 3NM the sequence will contain information related to the 
flight features from 5NM to 3NM. For the training and validation of the LSTM, an 80-20 data split was 
used. Table 9 presents the results for what we have termed "Global performance". When interpreting 
these results, one should bear in mind that they refer to the predictions made for all the splitted flight 
segments under study. Therefore, a recall of xx% does not mean that only that percentage of go-
arounds are identified. For this, one has to look at the results of the so-called "Local performance". 

Table 9. LSTM Global performance 

Global LSTM performance 

Airport Precision Recall ROC-AUC PR-AUC 

EDDM 0.8608 0.1401 0.6655 0.1717 

EDDF 0.8655 0.2454 0.7217 0.2883 
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The results shown in Table 10 refer to specific predictions made at particular distance points in the 
final approximation phase. These results can be directly compared to those of ML_CS_01. It is 
interesting to see how, despite being a general model for the whole final approach phase, the 
performance obtained at 2NM, 4NM, 6NM and 8NM is similar or better to the specific LightGBM 
models developed both in EDDM and EDDF. Although the vast majority of go-arounds go undetected, 
the possibility of using a unique sequencing model such as the LSTM opens up the possibility of 
exploiting the predictions it generates as an additional input in the go-around analysis process. The 
trend could be studied and we could alert the ATCO of those flights that, without being classified as 
go-arounds, show an upward trend in prediction and could therefore be worthy of additional checks. 
In any case, these lines of reasoning are further elaborated in the work done in WP3 related to the 
Risk Framework. 

Table 10. Table 10. LSTM Local performance 

Local LSTM performance 

EDDM 

Prediction point Precision Recall ROC-AUC PR-AUC 

2NM 0.9167 0.3411 0.7925 0.4102 

4 NM 0.8571 0.1395 0.6681 0.1732 

6 NM 0.8182 0.0698 0.6302 0.0896 

8 NM 0.8333 0.0388 0.6138 0.0639 

EDDF 

Prediction point Precision Recall ROC-AUC PR-AUC 

2NM 0.8718 0.4130 0.7992 0.4695 

4 NM 0.8667 0.2632 0.7359 0.3061 

6 NM 0.8727 0.1943 0.6842 0.2282 

8 NM 0.7660 0.1457 0.6761 0.1807 
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4 Model Interpretability results 

4.1 SHAP (SHapley Additive exPlanations) 

SHAP (SHapley Additive exPlanations) is an interpretability technique based on Shapley values 
developed to provide explanations of individual predictions [16].  SHAP focuses on trying to explain 
the prediction of a particular instance by calculating the contribution of each feature to the prediction. 
It calculates Shapley values from coalition game theory where the feature values of a data instance 
act as players in a coalition. The Shapley values tell us how to fairly distribute the prediction among 
the different features. An innovation that SHAP brings over other similar techniques (e.g., LIME) is that 
the Shapley value explanation is represented as an additive feature attribution method, a linear model 
[6]. In addition, SHAP also features an implementation for tree-based machine learning models, such 
as decision trees, random forests and gradient boosting trees [17]. 

For the interpretation of the results of the models developed we will mainly use two types of 
visualisations: Global feature importance and Local explanation summary. Global feature importance 
is computed as the average of the absolute Shapley values per feature across all the data. This way of 
calculating global feature importance in SHAP is an alternative to permutation feature importance (see 
section 2). Permutation feature importance is based on the decrease in model performance whereas 
SHAP is based on the magnitude of feature attributions. Local explanation summary plots provide a 
combination of feature importance and feature effects. Each point on the plot is a Shapley value for a 
feature and a individual instance. The y-axis shows the different features while the x-axis shows the 
calculated Shapley value. The colour represents the actual value of the feature for each instance from 
low to high. Moreover, if overlapping occurs jitter in the y-axis is added to get a sense of the 
distribution of the Shapley values per feature. 

4.2 Interpretability ML_CS_01 

4.2.1 EDDM interpretability analysis 

To carry out the interpretability study of the models developed, we have used the models with 
the feature selection, thus reducing the original characteristics used in the training of the models. This 
way simpler models will be studied, facilitating the calculation of the shapley values, as well as reducing 
the introduction of possible features that introduce noise in the model and that, due to the stochastic 
nature of the models, could misrepresent the performance of the model.  

Starting with the model developed for EDDM at 2NM, we can see the SHAP feature importance results 
in Figure 3. It is important to always bear in mind in these analyses that from the results of the 
interpretability techniques it is not possible to derive causal relationships between the features and 
the predicted event (go-arounds), but merely to infer the same. This is why the analysis should not 
focus on specific features and/or on the ranking generated by SHAP, but rather on a more global 
perspective. In this way, more reliable conclusions can be drawn. In Figure 2, we can see the 
preponderance of features related to the "Approach performance", indicating that they have the 
strongest cause-effect relationship in the go-around prediction for our model. In particular it is 
interesting to see how in general for the different sampling points the same "Approach performance" 
feature types are repeated showing the importance especially of the vertical speed (hdot_mds) and 
energy level in the go-around scenarios. In addition, we can also observe interesting situations such as 
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that for a number of flights the cause of their being labelled as go-arounds is influenced by their high 
vertical speed or energy levels at 2NM or by having a small closing time with the aircraft in front of 
them. Features related to the number of approaches on the same runway in the last 30 minutes 
(rwy_ARR_10_mins) is also observed as relevant, indicating the effects airport traffic volume hast as 
well as the flight's callsign indicating some perceived relationship between it and the probability of a 
go-around. 

 

Figure 3: EDDM  2NM - interpretability results (Top 20 features) 

Figure 4 shows the SHAP features ranking for the 4NM model at EDDM. Comparing with the results 
for 2NM we can see that in this case "Flight information" and "Airport information" features have a 

higher relevance in the prediction. We see how the main features are the callsign and the runway id 
indicating the possible effect that airline/crew familiarity with the airport has or indicating how the 
approach complexity in some runways can be higher than in others. In this case we can see many 
"Airport information" features, especially the total number of previous go-arounds at the 

airport (airport_GA_60_mins) and the number of previous arrivals at the approaching runway 
(rwy_ARR_10_mins). In both cases, high volumes generally favour the positive prediction of go-
arounds. "Approach performance" features are also identified as in the case of 2NM, although with 
lesser relevance. It is still interesting to note that these are generally related to vertical speed, ground 
speed and aircraft track. 
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Figure 4: EDDM  4NM - interpretability results (Top 20 features) 

Figure 5 shows the SHAP features ranking for the 6NM model at EDDM. At 6NM it can be confirmed 
that there is a trend the further away from the threshold where the "Approach performance" features 
loose relative importance in the prediction. This is because the further away from the threshold, in 
most cases, the aircraft performance values (e.g., ground speed or vertical speed) are very similar 
between aircraft with and without go-arounds. Although we can still see the importance of features 
such as the aircraft track and energy level. We can also see how the "Flight information" and "Airport 
information" features gain relative importance. As with 4NM the callsign and runway id presents a high 
feature importance for the model. There are also temporal features (week and hour) showing a 
possible temporality in the occurrence of go-arounds throughout the day and year. 

 

Figure 5: EDDM  6NM - interpretability results (Top 20 features) 

Finally, Figure 6 shows the SHAP features ranking for the 8NM model at EDDM. In this case we see 
with the feature wind speed appears as the most important. The "Weather data" features had only 
been relatively important so far, but here again we see that the further away from the threshold the 
"Approach performance" features become less important. Features related to "Weather data", 
"Airport information" and "Flight information" gain importance. From these it can be inferred that the 
model tries to make predictions more based on the operational context information (weather and 
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airport traffic) rather than on the aircraft performance data of each aircraft. This may be one of the 
explanations why the model performance decreases with distance to the threshold.  

 

Figure 6: EDDM  8NM - interpretability results (Top 20 features) 

4.2.2 EDDF interpretability analysis 

Analogously to the case of EDDM, the models to which the feature selection was applied were used 

for the EDDF interpretability analysis. Figure 7 shows the SHAP feature for the 2NM model at EDDF. 
Similar to the EDDM case, the "Approach performance" features show the highest importance, 
especially vertical speed, energy level and aircraft track. "Airport information" features such as the 

total number of previous go-arounds at the airport and number of previous arrivals at the approaching 
runway also present high importance. On the other hand, also important "Flight information" features 
are shown, especially the week, and "Weather data" such as wind speed. Also, it can be seen how in 
general for the different sampling points the same types of "Approach performance" characteristics 
are also repeated showing the importance especially of vertical speed (hdot_mds), energy level and 
aircraft track in the go-around scenarios. In addition, we can also observe that for a number of flights 
the cause of being labelled as go-arounds is influenced by their high vertical speed or energy levels at 
2NM. 

 

Figure 7: EDDF  2NM - interpretability results (Top 20 features) 
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Figure 8 shows the SHAP features ranking for the 4NM model at EDDF. Again, comparing with the 
results for 2NM we can see that "Flight information" and "Airport information" features start to show 
a higher relevance in the prediction. We see how the among the main features are the callsign and the 
total number of previous go-arounds at the airport (airport_GA_60_mins). We also see the relevance 
of the week of the year as well as "Weather data information" such as wind speed and dew point. As 
in all other prediction points the "Approach performance" features still dominates the top 20 especially 
with vertical speed, energy level and aircraft track. It is interesting to see how the closing time also 

appear here and show that a small value of the closing time favours the go-around classification of a 
flight.  

 

Figure 8: EDDF  4NM - interpretability results (Top 20 features) 

Figure 9 shows the SHAP features ranking for the 6NM model at EDDF. it can be seen again that as we 
move away from the runway threshold, the "Approach performance" feature becomes less important. 
Among the main features we have "Weather information" such as wind speed, "Flight information" 
such as the aircraft callsign and "Airport information" such as the total number of previous go-arounds 
at the airport and the number of approaches on the same runway. In this case we can see how a high 
vertical speed especially at 6 NM is marked as very relevant in a series of flights for their classification 
as go-arounds. 

 

Figure 9: EDDF  6NM - interpretability results (Top 20 features) 
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Finally, Figure 10 shows the SHAP features ranking for the 8NM model at EDDF. In this case as in that 
of EDDM the feature wind speed appears as the most important and again we see that the further 
away from the threshold the "Approach performance" features become less relevant. Features related 
to "Weather data", "Airport information" and "Flight information" gain importance. From these it can 
be again inferred that the model tries to make predictions more based on the operational context 
information (weather and airport traffic) rather than on the aircraft performance data of each aircraft. 
This may be one of the explanations why the model performance decreases with distance to the 
threshold. Lastly, it should be noted how in this, similar to the previous one, high vertical speeds at 
8NM are identified as very relevant in a series of flights for their classification as go-arounds 

 

Figure 10: EDDF  8NM - interpretability results (Top 20 features) 

4.3 Interpretability ML_CS_02 

Figure 11 and Figure 12 show the feature importance ranking of the LSTM models developed for 

EDDM and EDDF respectively. As this is a more complex type of ML model, a technique from the SHAP 

library called "Expected gradients" was used to extract the feature importance. This technique is an 

extension of the integrated gradients method [18], which is a feature attribution method designed for 
differentiable models based on an extension of Shapley values to infinite player games (Aumann-
Shapley values).  

The first thing to take into account when evaluating the importance of the features in this case study 
is that, unlike those of ML_CS_01, they are not located at a single point but rather throughout the 8NM 
to 2NM. That is why it is not easy to draw conclusions about high or low values of this feature and their 
effect in the go-around prediction: This will be dependant on where it is located. Comparing the results 
of both models we can see how in both cases the hour and temperature ranked in the top five features. 
Of particular interest is the latter because although at first sight it may appear to it should have a lesser 
impact than another such weather information such as wind, it may hide relationships with other 
important meteorological phenomena (e.g. stormy weather). Also interestingly in the case of EDDM 
one can see the high importance of height (haal_m). The latter for EDDF shows, on the contrary, low 
importance. In the case of EDDF we can see that wind speed and head wind show a high importance 
while not so high for EDDM. 
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Comparing the results of ML_CS_02 with those of ML_CS_01, some interesting variations can be seen. 
For example, in ML_CS_01 aircraft track generally showed a high relevance but not so much for the 
LSTM based models used in ML_CS_02. In contrast, for the LightGBM models from ML_CS_01, the 
many of the "Weather information" features such as temperature or dew point do not appear at any 
prediction point as one of the top 20 features. Where both types of models coincide is that in all cases 
ground speed is usually one of the most important features. This allows us to infer with some degree 
of certainty its importance in detecting and predicting a go-around approach. 

 

Figure 11: EDDM - LSTM Feature importance 
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Figure 12: EDDF - LSTM Feature importance 
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5 Conclusions 

In this deliverable a technical summary of the second phase of Work Package 4 (WP4) of the SafeOPS 
project has been presented. WP4 is dedicated to the development of all tasks related to the technical 
development of a data-driven predictive solution for the prediction of go-around situations in airport 
operations. The work carried out in this second phase consisted in the development of the final 
predictive results for both ML_CS_01 and ML_CS_02 as well as an analysis of the interpretability and 
explainability of the ML solutions developed. 

With respect to the objectives set out for WP4, we can say that we successfully developed different 
ML solutions which, taking into account the unbalanced nature of the go-around events, have been 
able to adequately provide predictions in advance. At the two airports investigated (EDDM and EDDF), 
models developed have been able to identify in some cases 34%-40% of all go-arounds with a precision 
of close to 90%. Although the recall is not particularly high, through previous work both in (SafeOPS 
D2.1 [1]) and (SafeOPS D4.1 [3]) we identify that due to the limitations of data used, such as ADS-B, it 
would be very difficult or impossible to have high levels of recall, as ATC induced go-arounds  (e.g. the 
runway is blocked or other traffic requiring immediate priority) would not be adequately reflected in 
the data and therefore the model would not be able to identify these events correctly. In addition, the 
work has also focused on investigating the interpretability of the models developed. For this purpose, 
a study of the feature importance, using the SHAP python package, for each model and airport was 
carried out. From these, of the main conclusions drawn we find the preponderance of features related 
to "Approach performance" such as vertical speed, ground speed or energy level. During the 
development of the Predictive Layer for SafeOPS the main takeaways and lessons learned for future 
developments of ML solutions are: 

• Data quality and validation: we have seen first-hand the importance of data in ML models. On 
the one hand, if the event to be predicted is not fully captured in these, the performance of 
the models will be limited. In addition, the importance of continuous validation of data quality 
to ensure the veracity of the model's output. Thanks to this we were able to detect previous 
errors in the data processing stages, correct them and re-evaluate the models. We believe that 
data validation will be a key process in all future developments of possible ML tools in ATM in 
the field of certification.  

• Human-centered design and Performance assessment: From the outset, it has been 
important to maintain a user-centred development. For example, establishing the need for 
low false alarms from a user perspective often led us to focus model development on precision 
optimisation in a kind of trade-off between precision and recall. Understanding the needs of 
the user and their operational context is vital to the successful development of an ML tool. 

• Human-Interpretability: As we have seen throughout this report, the interpretability of 
models can be very important when they are helping to make decisions in critical situations. It 
is important that stakeholders have some understanding of how the model is generating the 
predictions, what it is based on and what they can expect from it. In this way, the user can 
more effectively incorporate these predictions into their decision-making process and develop 
trust with the ML tool.   

The results of all the technical work done in WP4 will be delivered to WP3, presented in workshops 
with stakeholders and will help to further develop and define the Risk Framework. In addition, it will 
also support the Experimental/validation plan developed in WP2. Finally, at the beginning of the 
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project, functional and non-functional requirements were defined for the prediction tool. A final 
assessment of the fulfilment of these requirements is provided in Table 11. 

Table 11. ML related Functional and Non-Functional Requirements 

Requiremen
t type 

Requiremen
t category 

Requiremen
t ID 

Requirement 
definition 

Additional 
informatio
n 

Status 

Functional 
Requirements 

High Level 
Functionality 

FR.C.01  The system shall 
output a probability of 
an approaching A/C 
performing a GA (also 
referred to as 
prediction), given data 
that describes the 
A/C's approach and the 
conditions thereof as 
input. 

Achieved Deliverable 
4.1 - Section 5 
"Predictive 
modelling" 

Deliverable 
4.2 - Section 4 
"Model 
Interpretabilit
y results" 

FR.C.03  The system shall 
provide quantifiable 
metrics on the 
performance quality of 
the prediction. 

Achieved Deliverable 
4.1 - Section 5 
"Predictive 
modelling" 

Deliverable 
4.2 - Section 3 
"Case studies 
predictive 
results" 

FR.C.04 The system shall 
provide information on 
the contributing 
factors, responsible for 
the prediction. 

Achieved Deliverable 
4.2 - Section 4 
"Model 
Interpretabilit
y results" 

Timing of 
Prediction 

FR.T.01  The prediction shall be 
computed every 
prediction update rate 
seconds in between a 
minimum distance and 
maximum distance 
measured from the 
runway threshold. 

Achieved Deliverable 
4.2 - Section 3 
"Case studies 
predictive 
results" 

FR.T.02  The prediction shall be 
computed at specified 
distance increments in 
between a minimum 
distance and maximum 
distance measured 
from the runway 
threshold. 

Achieved Deliverable 
4.2 - Section 3 
"Case studies 
predictive 
results" 
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Requiremen
t type 

Requiremen
t category 

Requiremen
t ID 

Requirement 
definition 

Additional 
informatio
n 

Status 

Big Data and 
Machine 
Learning 
Requirements 

FR.D.01 The data sets available 
to the system shall be 
stored in a data lake, 
where they can be 
accessed as input for 
the data pipeline. 

Achieved Deliverable 
4.1 - Section 2 
"Data 
infrastructure" 

FR.D.02  The system shall 
contain a data 
processing pipeline 
that automates data 
cleaning and data 
preparation tasks. 

Achieved Deliverable 
4.1 - Section 3 
"Data 
preparation" 

FR.D.03  The system shall 
contain a data cleaning 
process, that 
automates the 
following tasks: 

• outlier 
detection 

• filtering / 
missing value 
handling 

for the data sets 
available in the data 
lake. 

Achieved Deliverable 
4.1 - Section 3 
"Data 
preparation" 

Deliverable 
4.1 - Section 5 
"Predictive 
modelling" 

FR.D.04  The system shall 
contain a data 
preparation process, 
that automates the 
following tasks: 

• data fusion  

• target 
labelling 

• feature 
engineering 

for the data sets 
available in the data 
lake, and generates 
training data sets, test 
data sets and 
validation data sets. 

Achieved Deliverable 
4.1 - Section 3 
"Data 
preparation" 

Deliverable 
4.1 - Section 5 
"Predictive 
modelling" 

FR.M.01  The system shall 
contain a machine 
learning model training 
process, that optimizes 

Achieved Deliverable 
4.1 - Section 5 
"Predictive 
modelling" 
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Requiremen
t type 

Requiremen
t category 

Requiremen
t ID 

Requirement 
definition 

Additional 
informatio
n 

Status 

the prediction of a 
machine learning 
model, given a training 
data set. 

Deliverable 
4.2 - Section 3 
"Case studies 
predictive 
results" 

Non-
Functional 
Requirements 

Input Data NF.D.01  The data set provided 
as input to the system 
shall contain 
information on: 

• A/C 
performance  

• meteorologica
l conditions  

• pilot inputs to 
the A/C  

WTC of the A/C 

Achieved Deliverable 
4.1 - Section 3 
"Data 
preparation" 

Deliverable 
4.1 - Section 5 
"Predictive 
modelling" 

Deliverable 
4.2 - Section 3 
"Case studies 
predictive 
results" 

Computationa
l Efficiency 

NF.C.01 The information about 
the probability of a GA 
prediction should be 
provided in real time 
(less than 0.5s after 
provision of input data) 

Achieved In both case 
studies, model 
prediction can 
be performed 
in less than 
0.5 seconds. 
The main 
bottleneck is 
the processing 
of the data, 
although this 
can be 
achieved in 
under a 
second per 
flight.  

Model 
Training 

NF.M.01  The performance 
assessment of the 
system shall include 
quantifiable metrics 
on: 

• true positive, 
true negative, 
false positive 
and false 
negative 
ratios 

Achieved Deliverable 
4.1 - Section 5 
"Predictive 
modelling" 

Deliverable 
4.2 - Section 3 
"Case studies 
predictive 
results" 
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Requiremen
t type 

Requiremen
t category 

Requiremen
t ID 

Requirement 
definition 

Additional 
informatio
n 

Status 

accuracy, precision, 
recall and specificity 

NF.M.02  The model training 
shall be able to cope 
with imbalanced 
training data sets 

Achieved Deliverable 
4.1 - Section 5 
"Predictive 
modelling" 

Deliverable 
4.2 - Section 3 
"Case studies 
predictive 
results" 
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7 List of abbreviations 

ADS-B Automatic Dependent Surveillance–Broadcast 

AI Artificial Intelligence 

AP Average Precision 

ATCO Air Traffic Control Officer 

ATM Air Traffic Management 

AUC Area Under the Curve 

EDA  Exploratory Data Analysis 

EDDF Frankfurt Airport 

EDDM Munich Airport 

HMI  Human-Machine Interface 

ICE Individual Conditional Expectation 

LIME Local Interpretable Model-agnostic Explanations 

LSTM Long Short-Term Memory  

METAR Meteorological Terminal Air Report 

ML  Machine Learning 

ML_CS Machine Learning Case Study 

NM Nautical Miles 

OL Operational Layer 

PDP Partial Dependacy Plots 

PL Predictive Layer 

PR Precision-Recall 

RF Risk Framework 

RNN Recurrent Neural Networks 

ROC Receiver Operating Characteristic 

SHAP Shaley Additive Explanations 

WP Work Package 

XAI Explainable AI 
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