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1 Introduction to complexity management in en-
route operations

1.1 En-route complexity management concept

1.1.1 Context - challenges managing workload in enroute ATC

Managing workload and complexity in en-route Air Traffic Control (ATC) poses significant challenges for Air Traffic
Control Centers (ACCs). ACCs are responsible for ensuring the safe and efficient flow of air traffic within their
designated airspace. However, the increasing number of flights and the complexity of the airspace have made it
increasingly difficult to manage the workload effectively. To address this issue, ACCs often limit the amount of
traffic per sector.

One of the primary reasons for limiting traffic per sector is to prevent overload and ensure that controllers can
effectively handle the workload. Each sector within an ACC has a specific capacity, which is determined by factors
such as the number of available controllers, the complexity of the airspace, and the equipment and technology
available. By limiting the number of aircraft assigned to each sector, ACCs can ensure that controllers have enough
time and resources to handle the traffic safely and efficiently. This approach helps prevent controller fatigue and
reduces the risk of errors due to excessive workload.

Additionally, limiting traffic per sector allows ACCs to better manage the complexity of the airspace. En-route ATC
involves coordinating the movement of aircraft across vast areas, often involving multiple ACCs and international
boundaries. The complexity arises from factors such as varying altitudes, different aircraft speeds, and diverse flight
routes. By controlling the amount of traffic in each sector, ACCs can maintain a manageable level of complexity,
enabling controllers to effectively monitor and guide aircraft. This approach helps ensure that controllers can
maintain situational awareness and make timely decisions, enhancing overall safety in en-route ATC operations.

Understanding how different types of air traffic interact with each other is crucial in effectively managing workload
and complexity in en-route Air Traffic Control (ATC). While some traffic may have conflicting paths and require
constant monitoring and coordination, others may have non-conflicting routes and pose less of a workload for
controllers. Therefore, it is essential for ACCs to have a comprehensive understanding of the traffic patterns and
potential interactions before assigning them to specific sectors.

Predicting interactions between aircraft at least 30-60 minutes in advance, or even further, can significantly
enhance the management of workload and complexity in en-route ATC. By utilizing advanced technologies and
predictive modeling, ACCs can anticipate potential conflicts and plan accordingly. This proactive approach allows
controllers to distribute traffic more efficiently across sectors, minimizing the risk of congestion and reducing the
workload on individual controllers. Furthermore, by identifying non-conflicting traffic in advance, ACCs can
optimize the utilization of airspace and resources, ensuring a smoother flow of air traffic and reducing complexity.

Incorporating predictive interaction analysis into the workload and complexity management strategies of ACCs can
also improve safety and efficiency. By identifying potential conflicts early on, controllers can take proactive
measures to mitigate risks and maintain separation between aircraft. This not only enhances safety but also reduces
the cognitive load on controllers, allowing them to focus on critical tasks and make informed decisions. Additionally,
by understanding how traffic will interact in advance, ACCs can provide more accurate and timely information to
pilots, enabling them to adjust their flight paths or speeds to avoid conflicts. Overall, integrating predictive
interaction analysis into en-route ATC operations can greatly enhance the management of workload and
complexity, leading to safer and more efficient air traffic management.

Computing interactions between air traffic in en-route Air Traffic Control is a complex task that requires advanced
computation due to several factors. As time progresses, the potential number of interactions increases non-linearly,
especially when more traffic flows are involved. This exponential growth in potential interactions poses a significant
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challenge for ACCs in managing workload and complexity. Advanced computational algorithms and models are
necessary to handle the vast amount of data and calculate potential conflicts accurately. These computations need
to consider various factors such as aircraft performance, winds, and potential instructions from adjacent ACCs,
which further contribute to the complexity and uncertainty of the task.

The presence of uncertainties in en-route ATC further complicates the computation of interactions. Aircraft
performance can vary, and external factors like changing winds can influence the flight paths and speeds of aircraft.
Additionally, instructions from adjacent ACCs may impact the flow of traffic and introduce further uncertainties.
ACCs must account for these uncertainties and consider multiple scenarios while computing interactions. This
requires the development of robust computational models that can handle these uncertainties and generate
accurate predictions. By considering various scenarios and accounting for uncertainties, ACCs can better manage
workload and complexity, ensuring the safe and efficient flow of air traffic in en-route ATC operations.

Simplifying the problem of workload and complexity management in en-route Air Traffic Control by solely
computing the number of expected traffic and identifying evolving traffic (e.g., changing flight levels) is an
incomplete approach. While these factors provide some insight into the volume of traffic, they do not fully reflect
the expected complexity and workload. This limited perspective can lead to inefficient use of capacity or safety
issues within sectors.

Relying solely on traffic volume fails to account for the intricacies of air traffic interactions and the potential impact
on workload and complexity. It is possible for a sector to have a high volume of traffic but low complexity if the
flights have non-conflicting routes. Conversely, a sector with a lower volume of traffic can experience high
complexity due to conflicting flight paths or challenging weather conditions. By overlooking these factors, ACCs
may either regulate sectors unnecessarily, resulting in wasted capacity, or underestimate the complexity, leading
to potential safety issues.

,___+—————a)»————

=, x

To address this challenge, ACCs need to adopt more comprehensive approaches that consider not only traffic
volume but also the potential interactions, conflicting routes, and other factors that contribute to complexity and
workload. Advanced computational models and algorithms can be developed to analyze and predict these
complexities, allowing ACCs to make more informed decisions about sector regulations and resource allocation. By
incorporating a holistic understanding of complexity and workload, ACCs can optimize sector management,
enhance safety, and ensure efficient use of airspace capacity.
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1.1.2 The role of the digital assistance in enroute complexity management

Introducing a digital assistant specifically designed to manage complexity in the operational room of Air Traffic
Control (ATC) can revolutionize workload management and enhance safety in en-route ATC operations. This digital
assistant would serve as a sophisticated system with access to vast computational capabilities, running in the cloud
and leveraging a comprehensive set of information to support decision-making processes.

The digital assistant would be equipped with advanced algorithms and models to analyze and predict the
complexity of air traffic. It would consider factors such as traffic volume, evolving traffic, potential interactions,
conflicting routes, and weather conditions. By incorporating real-time data on winds, aircraft types and
performance, complexity of adjacent ACCs, weather forecasts, and other relevant information, the digital assistant
would provide a holistic understanding of the operational environment.

With its computational capabilities, the digital assistant would be able to process large volumes of data and
generate accurate predictions. It would assist supervisors and operational room heads in making informed decisions
about sector regulations, traffic distribution, and resource allocation. By optimizing the workload management
process, the digital assistant would help prevent both wasted capacity and safety issues due to underestimated
complexity.

Furthermore, the digital assistant would continuously learn and adapt to changing conditions and patterns in air
traffic. It would leverage machine learning techniques to improve its predictive capabilities over time, enhancing its
ability to anticipate and manage workload and complexity effectively. By constantly analyzing data and patterns,
the digital assistant would provide valuable insights and recommendations to support decision-making processes
in the operational room.

By harnessing advanced computational capabilities, accessing a wide range of information, and leveraging machine
learning techniques, this digital assistant would empower supervisors and operational room heads to make
informed decisions, optimize workload management, and ensure the safe and efficient flow of air traffic in en-route
ATC operations.

A step-by-step use case illustrating how the concept of advanced sector and workload management using the
digital assistant could be as follows:

weather 1.

trajectory \l/ sector

Data Collection and Analysis: The digital assistant
continuously collects and analyzes real-time data,
including traffic volume, evolving traffic, weather
conditions, airspace restrictions, and other relevant
information. It utilizes advanced algorithms and models
to predict complexity and workload based on this data.

2. Complexity Assessment: The digital assistant

Monitoring ) /;; ‘ - predicted  assesses the comp!exity ofleach sectqr t?ased on factors
+ L7 o ) assessment | + such as potential interactions, conflicting routes, and
HeELIaier / Complex airspace restrictions. It considers the predicted
f )/ & workload and complexity for each sector, taking into
+* coordination account the specific characteristics of the airspace and

Implementation | -~ D\E/Z?rfilélgfign traffic patterns.
3. Workload Distribution: The digital assistant
\ / provides recommendations to the supervisor regarding
i _ workload distribution. It suggests potential sector
D,ﬁg,'j'r?g” g\l,’apliravt'iso?: closures, openings, mergers, or changes in sector
configuration to optimize workload management while
/h ensuring safety and minimizing complexity. These
recommendations are based on the predicted
approve modify airline RT complexity and workload, as well as the available

reject flow

resources and expertise of air traffic controllers.
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4. Supervisor Evaluation: The supervisor evaluates the recommendations provided by the digital assistant.
They consider the predicted workload, complexity, and safety implications of the proposed changes. The
supervisor may also take into account other factors such as airline preferences, traffic flow management
data, and real-time weather updates.

5. Decision-Making: Based on the evaluation, the supervisor makes informed decisions regarding sector and
workload management. They may approve the proposed changes, modify them based on their expertise
and judgment, or reject them if they deem them unsafe or impractical. The supervisor ensures that safety
remains the top priority while optimizing workload distribution and complexity management.

6. Implementation: Once the decisions are made, the necessary changes in sector configuration, airspace
allocation, and traffic distribution are implemented. The digital assistant assists in coordinating these
changes, providing real-time updates and guidance to air traffic controllers and other relevant stakeholders.

7. Monitoring and Adaptation: The digital assistant continuously monitors the implemented changes and
theirimpact on workload and complexity. It collects feedback and data from air traffic controllers and other
sources to assess the effectiveness of the decisions made. The digital assistant adapts and learns from this
feedback, refining its predictive capabilities and recommendations for future workload management.

Within SafeTeam, and based on the use case definition developed under D3.1, we will limit the role of the digital
assistant as a decision support tool, providing enriched information to the supervisor to take informed decisions
based on the complexity assessment of the sectors and how the complexity of the air sectors is distributed along
the day for the different configurations. The SafeTeam Digital Assistant would therefore provide to the supervisor
the different possible configurations with an assigned complexity indicator per sector (or sector partition) for the
next blocks of time. This information would help supervisor to balance demand and capacity and to decide on the
most optimal configuration based on the complexity assessment. Accordingly, the SafeTeam DA would cover steps
1 to 6. Steps 7 and 8 would be part on a future evolution of the system. By following this advanced sector and
workload management concept, utilizing the capabilities of the digital assistant, supervisors can make data-driven
decisions, optimize workload distribution, and ensure the safe and efficient management of complexity in en-route
Air Traffic Control operations.

The implementation of the SafeTeam digital assistant for sector and workload management targeting TRL6
involves several specific challenges that we will address. The DA development focuses on:

1. Data Integration and Accessibility: This includes real-time traffic data (ADS-B surveillance data), weather
information (wind data and storm data) and airspace restrictions. The Victors data platform and interface
ensures seamless integration and accessibility of these diverse data sources.

2. Computational Power and Scalability: To process large volumes of data, perform complex algorithms and
predictive modeling. Victors cloud-based infrastructure facilitates scalability. This infrastructure has
implemented Uber's H3 (Hexagonal Hierarchical Spatial Index) model. H3 is an open-source geospatial
indexing system designed to efficiently partition and index geographic space. Our application of this model
is used to divide the airspace volume into hexagonal cells, to paralelize the problem of conflicts detection.
It enables advanced geospatial analysis, fast queries, and seamless visualization, even for real time analysis
problem (like monitoring the distance among each pair of aircraft).

3. Accuracy and Reliability: Although the use case presented is not planned to be used by executive
controllers (with high safety critical level), ensuring the accuracy and reliability of the system is key to build
trust on the tool. In this line, the current deliverable presents the validation exercises performed with air
traffic controllers, its methodology and results. This exercises have been key to validate and calibrate the
metric and the tool.

4. Human-Machine Interaction: Requires a carefully designed, professional interface. The challenge lies in
creating a system that effectively communicates complex information to supervisors and operational room
heads, allowing them to understand and evaluate the recommendations provided by the assistant.
Balancing the level of automation and human control is also a challenge to ensure the systemis trusted and
accepted by the specialized audience in ATC.
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5. Regulatory and Safety Compliance: Implementing a digital assistant in the operational room of ATC
requires compliance with strict regulatory and safety standards, even if the tool is not involved in a safety
critical application. Ensuring that the system meets these standards and safety-critical considerations, is a
significant challenge. Close collaboration with regulatory bodies (as part of work package 5) and adherence
to industry best practices is essential to overcome these challenges.

1.2 Sierrag - Complexity Management tool based on Victors platform

The proposed concept would therefore be a digital assistant built on the Victors platform, designed to address the
challenges of sector and workload management in en-route ATC. It would be specifically developed to overcome
the complexities associated with data integration, computational power, accuracy, human-machine interaction, and
regulatory compliance. The name given to this tool is Sierras, using the “S” for “supervisor” according to the aeronautical
alphabet and the “5” according to the targeted level of autonomy in the Sheridan scale (see Deliverable 2.1).

To tackle the challenge of data integration and accessibility, the DA shall leverage robust data management
systems and interfaces. It shall seamlessly integrate real-time traffic data, weather information and airspace
restrictions, ensuring supervisors and operational room heads have comprehensive and up-to-date information at
their fingertips.

The proposed Digital Assistant overcomes the challenge of computational power and scalability by harnessing
cloud-based solutions and distributed computing architectures. This enables the assistant to process large volumes
of data, perform complex algorithms, and scale effectively as air traffic volume increases, ensuring optimal
performance and responsiveness.

With a strong focus on accuracy and reliability, the system will utilize validated algorithms and models that are
continuously improved and calibrated. The system undergoes extensive testing and validation against real-world
scenarios, incorporating feedback from air traffic controllers and supervisors to enhance accuracy and provide
reliable predictions and recommendations.

This technology addresses the challenge of human-machine interaction by offering an intuitive and user-friendly
interface. It shall effectively communicate complex information to supervisors and operational room heads,
enabling them to understand and evaluate the recommendations provided. The system strikes the right balance
between automation and human control, ensuring trust and acceptance among the specialized audience in ATC.

In the future, this technology is poised to advance the sector and workload management in en-route ATC. By
addressing the key challenges, it will offer a comprehensive and advanced digital assistant that empowers
supervisors and operational room heads to make informed decisions, optimize workload distribution, and ensure
the safe and efficient flow of air traffic.
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2 Sierras complexity metric

2.1 Current complexity metrics

The enhanced tactical flow management system (ETFMS) is the Eurocontrol Network Manager system responsible
of the coordination and optimize air traffic flow across Europe (Eurocontrol, 2025). To provide this service, it holds
two main tasks:

e Calculation of traffic demand in every sector of the NM area of operations, using the flight plan information
received from the aircraft operators (AOs).

e Computer-assisted slot allocation (CASA) and distribution of the resulting list of slots to all parties involved:
ANSPs, airlines and airports mainly.

It is therefore a core system to balance demand and capacity in the European airspace, including air sectors and
airports. As a result of this, ANSPs receive the predicted demand and it will be updated using real-time surveillance
data provided by the ANSPs, together with sector configurations, declared capacities and possible regulations or
other constraints provided by the ANSPs of the NM area.

To provide this service, this Eurocontrol unit can only monitor the number of flight flights entering a sector once an
hour (the entry counts) as well as the number of flights which are actually present in a given sector every minute
(the sector occupancy counts).

The ETFM predictions are used by the ATC supervisors to decide sector configurations and personnel rostering
during the shift. Accordingly, this decision is generally made based on these two simple metrics: entry counts
and occupancy counts. No information about the complexity of those trafficinteractions is available to support
the decision-making process of the supervisor.

On another hand, there is a vast amount of literature about complexity measurement. While there is not a single
agreed definition of complexity across the sector (Gianazza, 2017), researchers agree that traffic density is the most
important metric to assess traffic complexity. At the same time, it is demonstrated that this parameter alone does
not adequately capture or represent the workload of ATCOs and, therefore, has several limitations (Isufaj, 2022).
Intense research has been dedicated to the understanding of additional metrics related to complexity and workload
(Dmochowski, 2017), even independently of human performance (Perez Moreno, 2022) and a detailed relation is
presented in the next section. However, the applicability of those enhanced metrics is limited by the availability of
the data required to calculate the relevant parameters, especially of the application requires real time data
processing. As an example, a complexity metric was defined to assess the “Applicability of Current Metrics for
Benchmarking Purposes” (Standful3, 2020) using parameters like vertical interactions (for traffics in evolution),
horizontal interactions (for headings divergences), speed interactions (for differences in speed), or traffic
concentration (flow characteristics) to compare and rank the complexity of the traffic operated by the different
ANSPs. This application is related to an historical analysis and, therefore, is not limited by the real-time availability
of the data. Additionally, it uses BADA modelled data to calculate the parameters, no real data.

In the current use case application, we are developing a complexity metric to be used by an ATC supervisor at pre-
tactical level and, therefore, the defined metric (and the parameters used for it) needs to be available at that level
of operations in a control centre. According to Skybrary (2025), “The ATC shift supervisor is a person who is
operationally responsible for an ATS unit for the duration of the shift.” As the concrete tasks and roles are not
prescribe by ICAO, some variations among countries can exist and described in the corresponding Manual of
operations. In any case, its routine duties typically include, among others (Skybrary, 2025):

e Choosing the sector configuration - the supervisor usually has final authority on the decision to open new
or merge existing sectors, the configuration to be used (e.g. horizontally or vertically split sectors), etc. This
includes the decision when (and if) to use single person operations or combine/split working positions (e.qg.
planner and executive controller). This is the main task SafeTeam DA is assisting.
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e Personnel rostering during the shift, determining which controller(s) works in which sector and when. The
assessment provided by our digital assistant is intended to be used to support the allocation of resources
according to the most accurate estimation possible, on the traffic and its complexity.

Thanks to the adaptation of Victors for this purpose, we can enrich the metrics provided by Eurocontrol with
parameters based on traffics interactions that can be available real time in an ACC. Other parameters might, in
addition, complement our metric and become even more accurate, however, they are not real-time available or
impose other legal regulations that limit its usage.

2.2 Parameters to compute traffic complexity

2.2.1 Introduction

Traffic complexity, a multifaceted construct, is influenced by various factors, each playing a critical role in the
workload experienced by Air Traffic Controllers (ATCOs). This exploration delves into the traditional key parameters
that contribute to the computation of traffic complexity, laying the foundation for an innovative approach capable
of comprehensively addressing the challenges in modern en-route ATC.

2.2.2 Factors Influencing Traffic Complexity

1. Number of Planes Overflying an ATC Sector

e Volume of Air Traffic: Total aircraft passing through the airspace sector.
e Traffic Density: Closeness of aircraft within the sector.

e Time Distribution: Distribution of flights over specific time intervals.

2. Airspace Structure
e Complex Aircraft Routings: Intricacy and diversity of flight paths.

e Impact of Restricted Areas and Warning Areas: Extent of sector impact by restricted zones and associated
activities.

e Size of Sector Airspace: Physical dimensions of the airspace under sector jurisdiction.
e Intersecting Flight Paths: Number and complexity of flight paths intersecting within the sector.

e Impact of Airline Hubbing: Extent of sector impact by airline hubbing or major terminal/airport traffic.

3. Radio Congestion

e Frequency Congestion: Challenges posed by congestion on radio frequencies.

4. Longitudinal Sequencing and Spacing

e Sequencing Complexity: Need for longitudinal sequencing and spacing of aircraft within the sector.

5. Climbing or Descending Traffic

e Vertical Traffic Movement: Amount and frequency of aircraft ascending or descending within the sector.

6. Aircraft Mix and Military Flights
e Types of Aircraft: Variability in aircraft types, including VFR, IFR, props, turboprops, and jets.

e Military Aircraft Presence: Frequency and impact of military flights within the sector.
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7- Multiple Functions, Required Procedures, and Coordination
e Controller Roles: Variety of tasks a controller must perform, such as approach control, terminal feeder, en
route, and in-trail spacing.

e Procedural Complexity: Number and complexity of procedures controllers must execute.

e Interfacing Complexity: Level of coordination required with adjacent sectors, approach controls, center,
and military units.

8. Weather-Related Factors

e Weather Impact: How weather conditions affect air traffic control operations.

9. Adequacy and Reliability of Radio and Radar Coverage

e Communication and Surveillance: Reliability and coverage of communication and surveillance systems.

10. Use of digital assistants

e To advise of potential conflicts.
e To advise of resolutions to potential conflicts.

e To probe instructions.

2.2.3 Sierrag Approach

In tackling the complexities of en-route Air Traffic Control (ATC), Sierras pioneers a novel approach that centers
on addressing the consequences of the previous factors. Until now, numerically calculating these consequences
has posed a significant challenge, shifting the focus from the causes to their tangible outcomes.

1. Consequences of Traditional Factors and Time Distribution

e Evolution of Air Traffic Dynamics: Sierras acknowledges the changing landscape of air traffic, where direct
routes are increasingly common, disrupting traditional airspace structures. While factors like airspace
structure, traffic evolution, and mix of traffic were traditionally influential in workload calculations, as
mentioned, Sierras emphasizes their consequences rather than their direct impact.

e Dividing Time Calculations into Smaller Intervals: Sierras enhances accuracy by dividing hours into
smaller intervals for more precise time distribution analysis. This approach allows for a finer understanding
of traffic patterns and potential workload variations throughout the day.

2. Differentiation by Type of Traffic and Validating Factors by Controllers

While the number of planes remains a powerful variable in workload management, not all flights create the same
level of workload for ATCOs. Recognizing this, Sierras introduces a groundbreaking approach to differentiate
aircraft into three distinct groups:

1. Aircraft with Potential Conflicts (MTCD): This group includes flights that may be involved in potential
conflicts or interactions with other aircraft. To identify these flights, Sierras employs Medium Term Conflict
Detection (MTCD) algorithms, which detect situations where aircraft may come too close in terms of time,
even if no separation maneuver is required. This group imposes a high workload on ATCOs.

2. Non-Conflicting Traffic (NCT): NCT refers to aircraft that do not require specific instructions, fly at flight levels
with no traffic congestion, and maintain safe distances from destination airports and other aircraft. While
experienced controllers naturally recognize this type of traffic, Sierras's intelligent algorithm can also identify
NCT. These flights require less ATCO intervention and contribute to a workload lower than the average.

3. Other Flights: This category encompasses the remaining flights that may not be involved in MTCD but do
not meet the strict criteria to be classified as NCT. The workload generated by this group is considered
medium.
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Incorporating MTCD and NCT functionalites into the workload management strategies of Air Traffic Control
Centers (ACCs) is essential to effectively navigate the increasing complexity of en-route ATC. By detecting potential
conflicts and distinguishing non-conflicting aircraft, ACCs can optimize resource allocation and allow controllers to
focus on critical tasks. This integration enhances safety, reduces the cognitive load on controllers, and ultimately
enables more efficient workload management in en-route ATC operations.

These factors, crucial in Sierras's approach, will undergo validation by controllers as illustrated in D4.1.4. This
validation ensures that the computed traffic complexity aligns with the practical experiences and expertise of
controllers, enhancing the reliability and effectiveness of Sierras's workload management approach.

3. Additional Consideration: Radio Communications

Sierras recognizes the Dynamic Nature of Communications. The number of radio communications is inherently
tied to the number of aircraft and the type of traffic (an aircraft with a potential conflict ahead is more likely to
receive more instructions from ATC). Approaches that just rely on communication metrics should be approached
with caution, as they may not capture critical situations accurately. For instance, when aircraft are legally separated
but close in proximity, the ATCO may refrain from giving additional instructions, instead actively monitoring the
situation to ensure the minimum separation is maintained.

2.3 Sierrag complexity metric: KPls and formula

2.3.1 Key Performance Indicators (KPIs)

As mentioned before, Sierras identifies three fundamental KPIs -number of aircraft in or crossing the sector,
potential conflicts assigned to the sector, and Non-Conflicting Traffic (NCTs)- that underpin the calculation of
workload and complexity. These KPIs serve as the cornerstone for Sierras's data-driven approach to complexity
assessment.

Sierras employs a standardized period of 20 minutes for all its calculations. This duration strikes a balance, allowing
for meaningful assessments without making the operational room's sector configuration adjustments impractical
in smaller intervals. For each sector, Sierras calculates, for the next 20, 40, and 60 minutes, the traffic count of each
sector, the number of potential conflicts per sector, and the traffic categorized as NCT. The subsequent
development will delve into the specific formula guiding Sierras's computation of these key metrics.

2.3.2 Enhancing Complexity Calculation with Weighted Factors

In the assessment of air traffic controller workload and sector complexity, it's crucial to recognize that not all
components contribute equally to the overall workload. Factors such as the number of aircraft crossing the sector,
involved in potential conflicts, and Non-Conflicting Traffic (NCTs) have varying degrees of impact on controller
responsibilities.

1. Number of Aircraft in or crossing the Sector: While the number of aircraft provides a foundational
understanding of traffic volume, Sierras's workload calculation formula goes beyond a simple count. It takes
into account the specific characteristics of each flight, such as its proximity to other aircraft and the
potential for conflicts. Aircraft closer to potential conflicts contribute more significantly to workload.

2. Number of Potential Conflicts: Potential conflicts, as identified by MTCD algorithms, are a significant
workload factor. Sierras assigns higher weight to flights involved in potential conflicts, acknowledging
that controllers must allocate more attention and resources to manage these situations effectively.

3. Non-Conflicting Traffic (NCTs): NCTs represent flights that require minimal intervention from controllers
due to their adherence to predetermined parameters. Sierras considers NCTs with a workload factor lower
than the average, recognizing that these flights demand less direct controller involvement.
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2.3.3 Variability in Complexity Calculation Formulas

It's important to note that various methodologies exist for calculating air traffic controller workload, and these
methods may vary among service providers. However, Sierras's approach is designed to offer a comprehensive and
standardized means of complexity assessment that can be widely adopted across the industry based on real-time
accessible sources of data.

Sierrag's key variables—number of aircraft, potential conflicts, and Non-Conflicting Traffic (NCTs)—serve as
fundamental Key Performance Indicators (KPIs) that underpin the calculation of workload and complexity. While
specific formulas may differ, the industry's move towards a more data-driven and standardized approach
necessitates the inclusion of these key variables for accurate and meaningful workload assessment.

2.3.4 Integrating Declared Capacity

To bridge the transition to this innovative tool, Sierras can be linked with current practices by incorporating the
declared capacity of the sector. This capacity represents the maximum number of aircraft that can be safely
managed within the sector, taking into account factors such as airspace configuration and controller capabilities.
By aligning Sierras's workload assessment with declared capacity, the tool becomes a valuable resource for ATC,
aiding controllers in effectively managing traffic and maintaining safety.

2.3.5 Formula Development: Mimicking Air Traffic Controller Insights

Sierrag employs a formula, one of many possible, aimed at mimicking the results derived from complexity polls
conducted by controllers. In these polls, a group of Air Traffic Controllers (ATCOs) assesses workload under different
scenarios, varying the number of aircraft (ACFT), potential conflicts, and Non-Conflicting Traffic (NCTs), while also
incorporating the declared capacity as a reference.

The formula is essentially a curve-fitting endeavor, seeking to replicate the nuanced understanding controllers
possess about workload dynamics. By aligning Sierras's calculations with the insights gathered from these
complexity polls, the tool strives to provide a workload assessment that closely mirrors the real-world experiences
and expertise of controllers. The methodology and results of these exercises is reported in Annex I.

This approach ensures that Sierras's formula isn't a rigid, one-size-fits-all model but rather a dynamic and adaptable
framework, aligning with the varied perspectives of controllers operating in diverse scenarios. It underlines Sierras's
commitment to offering a tool that resonates with the practical insights of those on the front lines of Air Traffic Control.

2.3.6 Complexity Formula

DATA:
e CPH (capacity per hour),
e T (total traffic during period of time),
e P (number of PCs during period of time),
e N (number of NCTs during period of time).

The Sierras formula calculates en route air traffic control complexity by summing three weighted KPIs: total traffic
(T) at 40%, potential conflicts (P) at 40%, and non-conflicting traffic (N) at 20%. These percentages reflect each
KPI's impact, with higher non-conflicting traffic reducing complexity, subject to specific restrictions.

The weights were determined based on input from experienced air traffic controllers, whose insights highlighted
that total traffic and potential conflicts significantly drive workload and stress, justifying their higher 40% weights,
while non-conflicting traffic, though important for reducing complexity, contributes less directly, thus assigned a
20% weight. It's validation is presented in section 1.4.
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Scaled capacity (C) to window size (minutes) (i.e. 20 minutes):

C =

CPH

window size (minutes)
' 60

T contribution

X =

T .. T
° if vl < 1l.5else,2

P contribution

Y =

}32

)1/3
C-T

N contribution

N
Z=1-=
T
Complexity (W)

W = MAX(1, MIN(2X +2Y + Z,5))

Complexity (W) ranges between 1-5

Note: STDEV 15% against Complexity Poll

2.4 Advantages of the Sierras approach

Sierras brings a paradigm shift to en-route Air Traffic Control, introducing a suite of advantages that redefine the
way workload is managed. From standardization and systematic operations to historical complexity insights and
formula flexibility, Sierras offers an array of innovative features:

1.

Standardization: Sierras introduces a standardized complexity calculation procedure, ensuring
consistency across different sectors. This standardization facilitates the establishment of a common
method, enabling the comparison of results across various Flight Information Centers (FICs). This
uniformity promotes a cohesive and standardized approach to workload assessment in the field of Air
Traffic Control (ATC).

Systematic and Automated: Sierras operates systematically and is designed for minimal dependency on
human intervention. Its automated capabilities allow for a fully automatic workload calculation process. By
reducing reliance on manual inputs, Sierras enhances efficiency, accuracy, and operational reliability in en-
route ATC.

Historical Complexity Calculation: Sierras goes beyond current workload assessments by providing a
historical complexity calculation. By leveraging historical data, the tool can establish meaningful ranges of
workload, offering a valuable proxy for sector capacity. This historical perspective enables ATC
professionals to analyze trends, anticipate challenges, and optimize resource allocation.
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Flexibility with Formula Adoption: Sierrag offers flexibility by allowing the adoption of different
complexity formulas based on the same foundational Key Performance Indicators (KPIs). This adaptability
empowers ATC organizations to tailor the complexity assessment approach to their specific needs,
accommodating varying operational contexts and preferences.

Comprehensive Workload Factors: Sierras incorporates factors essential to valuing Air Traffic Controller
(ATCO) workload that were previously not fully considered. By accounting for the number of potential
conflicts, Non-Conflicting Traffic (NCT), and other critical variables, Sierras provides a more comprehensive
and accurate representation of the workload dynamics in en-route ATC operations.

Enhanced Decision Support: Sierras serves as a powerful decision support tool, offering valuable insights
into workload patterns and trends. ATC supervisors and operational room heads can leverage Sierras's
outputs to make informed decisions, optimize workload distribution, and ensure the safe and efficient flow
of air traffic.

Resource Optimization: The utilization of Sierras enables Air Traffic Control Centers (ACCs) to optimize
resource allocation based on real-time and historical workload assessments. This optimization contributes
to improved operational efficiency, reduced cognitive load on controllers, and enhanced overall airspace
management.
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3 Sierras implementation

3.1 Sierras infrastructure and data sources

3.1.1 Infrastructure

The Sierras project leverages Automatic Dependent Surveillance-Broadcast (ADS-B) data to compute key
performance indicators—total traffic (T), potential conflicts (P), and non-conflicting traffic (N)—for assessing air
traffic control complexity. These KPIs are processed and analyzed within a scalable cloud-based infrastructure
designed to handle high volumes of real-time aviation data efficiently. The system relies on cloud-based databases
to store and manage incoming ADS-B data streams, ensuring low-latency access and robust data handling.
Calculations for T, P, and N are performed using optimized algorithms deployed on cloud compute instances,
enabling rapid processing of surveillance data, flight plan information, and wind models. This cloud architecture
supports scalability to accommodate varying traffic demands across different airspaces. Results are transmitted
from the cloud to a web-based user interface, accessible via a standard internet connection without requiring
specialized hardware or high-bandwidth networks. The user interface, which visualizes complexity metrics for air
traffic controllers, will be detailed in a separate chapter. Security measures, on the data transmission and access
controls, ensure the integrity and confidentiality of sensitive aviation data throughout the process.

3.1.2 Data Sources
In order to effectively use the algorithms to detect the number of aircraft, traffic involved in potential conflicts, and
non-conflicting traffic, the following data is needed:

e Surveillance Data: Includes position, flight level, selected flight level, ground speed, and additional
parameters. The most straightforward way to access this data is through an Automatic Dependent
Surveillance-Broadcast (ADS-B) provider equipped with extended squitter capabilities, which provides
access to Mode-S data. This ensures comprehensive and precise tracking of aircraft in real time.

¢ Flight Plan Information: Essential for extrapolating aircraft positions to support the calculation of Medium-
Term Conflict Detection (MTCD) and Non-Conflicting Traffic (NCT) algorithms. Flight plans provide critical
intent data, enabling the system to predict trajectories and assess potential conflicts accurately.

e Wind Map at All Flight Levels: Wind conditions have a significant impact on aircraft ground speed,
particularly during turns or when encountering varying wind patterns at different altitudes. To account for
these effects, access to a comprehensive wind map across all flight levels is essential. While some providers
offer rough estimates of wind conditions at various layers of airspace, a more accurate wind map can be
generated based on information obtained from ADS-B. Many aircraft transmit real-time wind readings
through the extended squitter, allowing for the creation of a detailed and dynamic wind model.

3.2 Sierrag visual interface and dashboards

3.2.1 Visual interface. Pre-tactical tool

The Sierras pre-tactical tool is designed to enhance en
route air traffic management by calculating and
visualizing airspace complexity up to one hour in
advance, enabling supervisors to optimize sector
configurations and balance controller workloads. As
already mentioned, unlike traditional methods that
rely solely on the number of aircraft, Sierras
incorporates multiple key performance indicators
(KPIs)—total traffic (T), potential conflicts (P), and non-
conflicting traffic (N)—to compute a comprehensive
complexity metric. This metric supports more accurate
decision-making for re-sectorization, a daily process
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critical for maintaining safety and minimizing regulations that lead to costly airline delays. By automating the
calculation of complexity metrics, Sierras reduces reliance on manval assessments. The tool graphically
represents each KPI to maintain transparency and avoid the “black box” effect, allowing supervisors to clearly
understand the factors influencing complexity. For example, an en route supervisor can use this information to
determine the best sector combinations (e.g., closing one sector to open another) when controller resources are
limited, ensuring efficient and safe airspace management.

The pre-tactical tool’s user interface is web-based, accessible on any computer following secure authentication, and
tailored for supervisors as the primary users. It visually compares pairs of potential sector configurations within the
same horizontal constraint, making it intuitive to identify which combination achieves a more balanced workload
for air traffic controllers (ATCOs). For instance, volume B can be horizontally divided into two sectors when two
controllers are assigned: (B13, B45) or (B12, B35). The interface displays each sector’s complexity across 20-minute
intervals, with each interval represented by a column. A multicolored segment above each column indicates the
overall complexity metric, with colors signaling workload intensity (e.g., red for high complexity in B35's first 20
minutes, suggesting (B13, B45) as a better configuration for workload balance). The height of each column
corresponds to the total number of aircraft, with Non-Conflicting Traffic (NCTs) highlighted in green for clarity. The
number of potential conflicts (PCs), calculated automatically by Sierras’s Medium-Term Conflict Detection (MTCD)
algorithm, is displayed atop each column. A red dotted horizontal line marks the sector’s declared capacity (aircraft
per hour, divided by three for the 20-minute intervals), providing a reference for assessing traffic loads. This
interface, focused on real-time pre-tactical planning, is complemented by a separate post-analysis interface with
historical dashboards.

3.2.2 Post-analysis dashboards

The Sierras post-analysis
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supporting safety analysis, : I
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conflicts, allowing safety

managers to investigate

incidents, assess controller workload, and identify preventive measures for future operations. Additionally, the

tool supports evaluating whether sectorizations can be improved under similar circumstances, enhancing future
airspace management. The data collected also serves as a valuable resource for training machine learning
models to optimize sectorization, further aligning with Sierras’s focus on automatism through automated data
processing and analysis. This web-based interface, accessible on any computer after secure authentication, is
designed for managers, including safety managers, to drive data-informed decisions.

The post-analysis dashboards share a similar visual structure to the pre-tactical tool, presenting data in a clear, web-
based format. Users can filter by sector and toggle between day or year-to-day views to analyze trends over time.
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Key metrics are displayed in dedicated panels, summarizing total flights, flights with interactions at specified
distances, and other relevant indicators. A flight information chart visualizes data over a 24-hour period, with bars
segmented to show other flights, non-conflicting traffic, and interactions at different proximity thresholds,
alongside a capacity reference line. A separate complexity chart below displays complexity metrics across the same
timeframe, with bars indicating variations in complexity levels. This intuitive layout ensures managers can
efficiently review historical data, assess workload drivers, and identify opportunities for operational improvements.
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4 Sierrag Validation

The Validation of the use case 1 on ATC complexity includes two phases:
1. Validation of the complexity metric defined in Section 2 and the KPIs used.
2. Validation of the Sierras pre-tactical tool defined in Section 3 together with its functionalities.

Each of validation exercises, together with the corresponding results are presented in the following sections of this
chapter.

4.1 Validation 1: complexity metric and KPlIs

Objective

The first experiment was designed to evaluate the accuracy and relevance of Sierras’s proposed complexity metric
factoring: total traffic (T), potential conflicts (P), and non-conflicting traffic (N) in assessing air traffic controllers’
perception of an environment’s complexity. This step does not pertain to the evaluation of the human-machine
cooperation between a supervisor and Sierras. Its objective was to evaluate the relevance of the complexity
measure proposed by Sierras. Particularly, the experiment intended to compare Sierras’s traffic complexity
evaluation with those of Air Traffic Controllers for different scenarios (i.e., different traffic). This process goal is to
ensure that the tool’s metrics align with operational realities by comparing Sierras’s calculated complexity (W)
against ATCO's perceptions using scenarios based on real air traffic recordings.

Scenarios & independent variables selection

The first step involved selecting different scenarios for evaluation purposes. Two elements were considered for this
selection:

6. Explore as independently as possible the influence of each KPI used by Sierras (i.e., total traffic or T,
potential conflicts or P, and non-conflicting traffic or N).

7. Don't limit our evaluation to the manipulation of the KPlIs.

In that sense, a first approach was to define a set of KPIs value as a control condition (i.e.,, T=a, P=b, N = ¢), and
derive from it 6 conditions with a higher or lower variation of only one of those KPI's value (e.g., T=a, P=b, N =d;
as illustrated in the table below). This set of value was then used to extract real data and select scenarios with
visualization of the traffic using real air traffic data from the Austrian airspace.

Variables Total traffic (T) Potential conflicts (P) Non-conflicting traffic (N)
Concslmon Low Med High Low Med High Low Med High
Control X X X
X X
T
X X
X X
P
X X
X X
N

Table 1Approach 1 for Scenario's selection with independent variables and conditions
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Despite the selection of various sets of KPIs' value respecting the proposed structure, we did not find in the available
dataset corresponding scenarios. This could be due to the relative dependence between the different KPIs or to the
limited amount of data available.

We have therefore proposed a second approach based on currently available data. We explored the range of
complexity covered by the Sierras’s metric and its associated range of KPI's values. In order to compare ATCO
perceived complexity and Sierrag complexity metrics, we chose 7 complexity values from 1.5 to 4.5 in steps of 0.5,
and tried to identify scenarios where the complexity values returned by Sierras came as close as possible to these
target values. We selected scenarios that best satisfied our first constraint: for each KPI, find different scenarios
where the complexity value mainly depends on this KPI, while minimizing the contribution of the two others. In
addition and in order to evaluate other factors potentially involved in perceived complexity, we decided to test the
impact of a sector’s own complexity (which might be affected by its geometry, traffic dynamic, closeness to airports,
etc.). In that sense, we selected 3 sectors within the Austrian airspace based on an equal traffic capacity within 15
minutes.

To summarize, we manipulated 2 different factors (i.e., independent variables):

e Complexity  attributed by Sierrag (7  values from 1.5 to 4.5; * 0.1)
For each complexity value, 3 repetitions with a goal to have a local maximum of one of the KPI, while
minimizing the contribution of the two others.

e Sectors considered (3 different ones, E35, S35 & N35)

For each sector, we tried to distribute the local maximum of each KPI (e.g., 2 max T, 3 max P and 2 max N). Only for
the S35 sector, we could not find more than a scenario with a local maximum NCT in contrast to the other conditions.

It resulted in 21 trials, with control variables values reported in the table below:

Concitions Complexity r e | n] sector
1 1.56 6 51 E35
2 1.5 1.5 0 N35
3 1.46 3 olo S35
4 2.03 10 £35
5 2 1.9 4 1| N35
6 2.06 ol 71 s35
7 2.54 ole £35
8 2.5 2.5 7 2| N35
9 2.44 11 |1 535
10 2.94 14 |1 E35
11 3 2.9 9 3| N3s
12 3.04 0| a $35
13 [ 355 17 |2 E35
14 35 | 355 o] 7| n3s
15 3.59 10 11 s3s
16 3.98 1 5 E35
17 a 3.92 17 | 4 N35
18 3.98 13 1] s35
19 4.52 0 [12] €35
20 4.5 4.56 20 |1 N35
21 4.45 15 ol s35

Table 2. Approach 2 for Scenario's selection with description of independent variables and conditions
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Metric / Dependent variables selection

Because it was not possible to replicate a realistic air traffic controlling task which would have allowed for an
accurate assessment of ATCO’s workload. We therefore considered a simplified approach of ATCO’s perception of
the complexity of air traffic controlling scenarios to eventually leverage on the quantity of data and participants we
could gather.

With the scale below, please evaluate the compiexity of the situation within the central sector of the video you just watched

moderate
very low very high

Figure 1. Scale used for the evaluation of the perception of the complexity of each scenario.

Each complexity perception was evaluated on a 1 to 5 continuous scale (Fig.1), equivalent to the range of complexity
offered by Sierras’s complexity metric. Participants were not restricted on their response time. In addition, each
session ended with an equivalent rating (same continuous scale from 1 to 5) of the complexity perception of the
sector itself.

Material

Figure 2. Screenshot of a scenario's video, centered on the sector to be considered for evaluation of its’ perceived complexity

Each scenario was originally 15-minute scenario video (visual of one of the scenarios in Fig.2), accelerated to 5
minutes (thrice the speed) to optimize trial quantity within a minimal time frame while maintaining participant
engagement. The videos were uploaded on the Youtube platform, inaccessible with the public search bar but only
with unique URLs. As to control the quantity and the quality of information provided to each participant, we chose
to rely on video recordings without option to replay, speed up or down, or even pause the content.

This allowed to implement the experimental protocol using the PsyToolkit platform, enabling to program
experiments and surveys for academic studies, and make them accessible online to a broader number of targeted
participants. Recruiting ATCOs is challenging due to their demanding schedules, so the experiment aimed to be
easy to perform on their own time. It could be completed on computers, tablets or smartphones (no headphone
needed) without any experimenter present as every instruction required were displayed prior to the evaluation.

The survey was aimed at any Air Traffic Controllers (ATCOs) with various levels of trainings and experience, to bring
their operational expertise to the process. To maximize participation, the project used LinkedIin promotions,
presented at aviation congresses, and leveraged professional networks.

Participants were informed on the project, the objective of this experiment, their rights regarding their participation
and their data, and asked for their consent to participate, their data to be collected and analyzed by the ONERA
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research team, and the results to be shared within the European Project. Links to the researchers contact
information, a data protection officer of ONERA, and to the European Project official webpage were also made
available.

Data collection

Participating ATCOs, having provided informed consent, first completed a survey detailing their expertise and
demographics. In this introduction, they were also assigned a unique ID to ensure their anonymity and dataset
continuity through the different sessions. They were required to report their ID at every experimental session.

Each participant was presented with the 21 scenarios divided in 3 sessions of 35 mins. To be familiarized with the
structure and specificities of the different sectors considered, each session was centered on one sector only (i.e,
E35, N35 or S35). To avoid impacts of the order of presentation, sessions were randomized between participants,
and conditions within sessions. In addition, participants were asked to perform one session within one sitting, while
they could realize the three different sessions on different days. However, they were made aware that the full
completions of the 3 sessions was required to analyze their set of data.

Participants were then instructed on the main task as reported below:

“You are going to be presented 7 air traffic videos within a sector to provide you with an overview of a
scenario and enable you to make an evaluation regarding the complexity of this situation.

We ask you to watch entirely each video in full screen without any replay, speeding or pause. Once each
video finishes, close the YouTube window by clicking on the X, then press Continue.

[...]

You should focus on monitoring the traffic affecting the central sector, not the full screen, FL335 and
above. The task may be passive but we want you to adopt the controller's point of view. Imagine
measuring and solving potential conflicts and the efforts associated with those tasks.

You will then be asked to report your perceived complexity of the management of this situation with a
scale from "very low" to "very high" complexity.”

Despite the passiveness associated with looking at the video, we wanted them to treat the scenarios as real
operations, and try to actively identify potential conflicts in order to elicit realistic perception of potential complex
situations requiring management. However, with an online survey, we could not control for their engagement
within the task.

Analysis

The main hypothesis of Validation 1 is that Sierras’s complexity metrics accurately assess ATCOs judgment. We will
assess this hypothesis by comparisons of the scenario’s complexity perception ratings with Sierras's calculated
complexity scores. In order to do so, coefficient of correlation can be calculated between independent and
dependent variables. We will also look at the impact of individual KPIs manipulations (T, P or N) on the participants’
perception ratings.

Adjacent hypothesis considers that ATCOs judgment will diverge between participants depending on their
individual expertise and preferences. The correlations between complexity ratings and metrics will be explored at
the participants level, to observe those individual variations depending on the sample of data collected.

Closing hypothesis, assume that the nature of the sector and therefore some additional variables (e.g., geometry,
traffic dynamic, closeness to airports, etc.) impacts ATCOs evaluations of the scenarios, not considered by Sierras.
We will therefore consider how sectors complexity perception of the sectors may discriminate variation in
complexity perception between them (i.e, E35, N35 or S35), that could be matched to variability in the scenarios
evaluation. Therefore, exploration of the coefficient of correlation with or without sector segregation could entail
on its impact on complexity evaluation.

Results are documented in report D4.1.4.3
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4.2 Validation 2: Sierras tool and functionalities

Objective and Test Description

The second validation exercise aimed to focus on Sierras’s cooperativeness. More particularly, it addresses potential
human-machine cooperation risks identified through the application of the SafeTeam approach (D2.1.4) to Sierras’s
tool. The prior application of the HABA-MABA/LOA assessment (D3.2.2) underlined several potential issues in
future development of Sierras:

e "Data quality is key to any data-driven tool. The acquisition of data is not a task that the supervisor has to
actively monitor but it is possible that some training about the data origin and the overall processing carried out
may be necessary for the supervisor to have a better understanding of the system and to increase confidence
and trustinit.”

e "Supervisor does not need to have a deep technical understanding of how the information or predictions have
been calculated, although, some high-level training and basic familiarization may be necessary to give them an
overview of what the process does, in order to better understand any potential shortcomings and build
confidence.”

e "Having some degree of understanding of how the metrics, predictions or solutions have been calculated can
be needed.”

e "Overreliance could occur as long as the supervisor continuously uses it to improve the workload balance in the
different sectors.”

Those pitfalls are associated with operator’s lack in situational awareness and complacency issues. The system
development’s goal was therefore set to reduce out-of-the-loop-phenomenon, be transparent and predictable, and
provide users with situational awareness.

Those problematics directly relate to four of the design principles (D2.1) which can serve as input to the evaluation
process (see D2.2.2):

e Agents should share a common goal

e Agents should be able to share their status and intentions and observe the intentions of others.
e Designers of the system should strive for shared Situation Awareness

e The system should foster mutual trust

We therefore, used an experimental approach and sets of metrics described in D2.2 to quantify the pre-tactical
tool’s ability to support supervisors in optimizing sector configurations by leveraging the automated calculation of
complexity, compared to traditional methods based solely on total aircraft count (T); but also, to test the potential
of the Sierras tool to foster situational awareness, and trust though two levels of explainability of the complexity
metric.

Scenarios & independent variables selection

For this exercise, a simple airspace was created, divided into three columns (A, B, C), each sliced into a lower (1) and
upper (2) level, resulting in six different sectors: A1, A2, B1, B2, C1, and C2. Sectorization rules permit merging of
adjacent columns (e.g., AB or BC) or lower and upper sectors within the same column (e.g., A1 and A2) as seen in
Fig.3. Note that diagonal sectorization (e.g., A and C) is not allowed, as it does not occur in real-world air traffic
control operations. Configurations range from 1 to 6 open sectors, depending on the number of available
controllers. For this validation exercise, the airspace was to be allocated to two Air Traffic controllers, as to restrict
the number of sectorizations solutions to 3 as seen in Fig.1 (i.e., (i.e., 1) [AB][C]; 2) [A][BC]; 3) [ABC1][ABC2]).
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Figure 1. Airspace used in Validation 2 and the corresponding sectorization solutions.

In order to explore Supervisor’s ability to optimize sector configurations with or without Sierras, we selected
scenarios for the upcoming hour, derived from real historical data within the Austrian airspace database made
available for the SafeTeam project, reflecting various traffic and complexity conditions. We chose complexity
metrics from 2 to 4 in steps of 0.5, and tried to identify scenarios where the optimal sectorization solution depended
on mainly one of the KPI (i.e., the total traffic (T), potential conflicts (P), and non-conflicting traffic (N)), while
minimizing the contribution of the two others.

In addition, in order to evaluate other factors potentially involved in airspace sectorization, we decided to consider
the dynamic of the KPI within the predicted hour of each scenario. This manipulation is only applied to the Explained
experimental condition (described below), where the complexity metric is accompanied by a graphical
representation of the KPIs value and additionally their predicted distribution through 3 periods of 20 mins as
reported in Fig.2. We defined three manipulations of this dynamic:

e "“Positive dynamic” as when the dynamic of the KPIs reinforces the optimal solution based on the optimal
distribution of the complexity metric

e "“Neutral dynamic” when no difference in KPI distribution occurred between solutions

e “Alternative dynamic” when two solutions (of the three presented) were closely optimal in complexity
distribution but the dynamic of the KPIs favored the less optimal one (between the two optimal solutions)

[Per Sectorization]

Aircraft count

Aircraft count

Non-Conflicting Aircraft

Time periods

Figure 2. Display of the KPIs values and dynamic through three twenty minutes periods provided for each sectorization
solutions considered within the Explained condition

Those manipulations enable to test if participant notify differences in dynamic between solutions and scenarios,
and if so, if they accept that supplementary information and modify their response.
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To summarize, we manipulated 3 different factors (i.e., independent variables extended in Table. 3):

e Complexity attributed by Sierras (5 values from 2 to 4; + 0.5)

e KPI manipulated between solutions proposed (T, P and N)

e KPIs” dynamic between solutions proposed (Positive, Dynamic and Neutral)

Variables Complaxty KPI Dynamic of the
Conditions manipulated KPI
1 T Alternative
2 2 P Neutral
3 N Positive
4 T Positive
5 2.5 P Alternative
6 N Neutral
7 T Neutral
8 3 P Positive
9 N Alternative
10 T Alternative
11 3.5 P Neutral
12 N Positive
13 T Positive
14 4 P Alternative
15 N Neutral

Table 3. Description of the independent factors manipulated in Evaluation 2

Conditions selection

The evaluation protocol consisted of 3 different conditions:

e Control condition: associated with traditional sectorization methodology where participants accessed only

to total aircraft count (T) within each sector of the Airspace as described in Fig.3

e Conditions with Sierras’s complexity metric (W)

o Unexplained Sierras condition: associating T to Sierras’s assessment of each sectorization
solution. This condition displays 2 complexity metric per solution (i.e., one complexity per new

sector) described in Fig.4

o Explained Sierras condition: associating T, Sierras’s complexity metrics and the description of
the KPIs (T, potential conflicts P, non-conflicting traffic N) and their dynamic as reported in Fig.2

and Fig.5

The Explained condition allowed to explore the impact of transparency within the calculation of the complexity
metric. It also enables to test the impact of their dynamic, to foster trust within the complexity metric, but also avoid
overreliance if there are potential issues with the data quality considered or within the calculation of the complexity

—avoiding overreliance in the system.
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Figure 3. Example of a Control condition
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Figure 5. Example of an Explained complexity condition with neutral dynamic
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Metrics / Independent variable selection

As described in the introduction to this second Evaluation, the experimental design was developed to quantify
Sierrag’s complexity metric ability to support supervisors in optimizing sector configurations compared to
traditional methods based solely on total aircraft count (T); but also, to test its potential of the Sierras to foster
situational awareness, and trust. The selection of the relevant metrics was based on the approach and resources
listed in D2.2. It was also constrained by the level of development of the system, and the online platform of
experiment. Three different dimensions has been explored:

e Team performance:
We recorded responses provided by the participants to each scenario presented.
e Confidence and Trust

After completion of participants response (for each condition and rounds), they were invited to report their
“Confidence in my answer” - defined as the belief that your choice was correct based on the available evidence.
They were further asked to report their agreement with “I trust the complexity metric provided” — defined as the
belief that the complexity metric give an accurate assessment of the complexity of the situation. Dynamic reporting
of Confidence and Trust were both assessed on a 1 to 5 scale from Disagree to Agree.

e Acceptability and Explainability

End of the experiment’s questionnaires centered on the subjective quality of the Explained display through two
important dimensions of the human-machine cooperation. We used the Acceptability scale rating 9 components
on a 5 points Likert scale as captured in Fig.6 . It explores the Usefulness and Satisfaction perceived by participants
while interacting with a system.

The complexity metric with indicators used in this experiment is

Useless O 1O O 1O O |useful
Unpleasant ~ Pleasant

Bad Good

Annoying () () |Nice
Superfluous () |Effective
Irritating 3 ) |Likeable
Worthless Assisting
Undesirable ) |() |Desirable

Sleep inducing | () () | |Raising alertness

Figure 6. Acceptability scale presented at the end of the experiment regarding the complexity metric within the Explained display

The second questionnaire included in this Evaluation is the Explanation satisfaction scale. Participants have to rate
7 components on a 5 points Likert scale between “Strongly disagree” and “Strongly agree” as presented in Fig.7.

Concerning your satisfaction of the indicators of the complexity metric used in this experiment, please complete those last
questions.

From the explanation, | know how the complexity metric works.

Strongly disagree Disagree Neither agree nor Agree Strongly agree
disagree

Figure 7. One item of the explanation satisfaction scale presented at the end of the experiment regarding the display
proposed in the Explained condition

Horizon Europe - SafeTeam. D4.1 Human-machine collaboration in en-route operations - 27



The main instruction and components are reported below:

« Concerning your satisfaction of the indicators of the complexity metric used in this experiment, please
complete those last questions.”

"1. From the explanation, | know how the complexity metric works.

2. The explanation of how the complexity metric work is satisfying.

3. This explanation of how the complexity metric work has sufficient detail.
4. This explanation of how the complexity metric work seems complete.

5. This explanation of how the complexity metric work tells me how to use it.
6. This explanation of how the complexity metric works is useful to my goals.

7. This explanation shows me how accurate the complexity metric is.”

Material

Each scenario and displays were created based on prior Sierras’s displays propositions. The protocol was
implemented with the PsyToolkit platform as a survey, allowing for easy access online to a broad number of
targeted participants. Recruiting supervisors is even more challenging than ATCOs as there are even fewer, so the
experiment aimed to be easy to perform on their own time. It could be completed on computers, tablets or
smartphones (no headphone needed) without any experimenter present as every instruction required were
displayed prior to the evaluation.

Participants were informed on the project, the objective of this experiment their rights regarding their participation
and their data, and asked for their consent to participate, their data to be collected and analyzed by the ONERA
research team, and the results to be shared within the European Project. Links to the researchers contact
information, a data protection officer of ONERA, and to the European Project official webpage were also made
available.

Data collection

Participating Supervisors, having provided informed consent, first completed a survey detailing their expertise and
demographics. Each dataset was assigned to a unique ID to ensure their anonymity.

Confidence scale
* Per sector . * Choice between 3 sectorizations .
* Total aircraft court Sl * 105 max >
* 455 duration max
Confidence scale Trust scale
* Cholce between 3 sectorizations
* Per sector * 105 max
* Total aircraft court
* Per sectorization > > >

* Complexity metric
* Explained only - Dynamic
presentationof the KPis
* 455 duration max

Figure 1 Figure 8. Trial structure
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For analysis purposes the Control conditions were merged with Sierras’s complexity metrics condition into 2 total
conditions. Each trial shared the same structure illustrated in Fig.8, where participants were presented each scenario
in two rounds:

e First round: Control display
e Second Round: Unexplained or Explained display

Within the introduction of the survey, participants were instructed on their sectorization task, the two rounds of
evaluation per trial, with the different kind of resources made available (i.e., T forcontrol, W for
Unexplained/Explained, and KPI dynamics for Explained only) with appropriate definitions and illustrations to
familiarize them with the material. They were also informed on the different questions they would have to complete
following each trial (Confidence and Trust ratings), and at the end of the experiment (Acceptability and
Explainability ratings). They had the opportunity to complete one training trial before moving on to the experiment.

Each of the 15 conditions were presented twice: 1 for the pair Control — Unexplained and 1 for the pair Control —
Explained. In order to avoid familiarization to repeated scenarios, we reversed the values horizontally and vertically
between the two conditions so to do not change the complexity metric and dynamic but modify the optimal solution
position. We also pseudo-randomized the conditions so as to avoid repetition of the same scenario within one block,
by distributing them in two blocks of randomized conditions (e.g., block 1 = even number conditions of Control-
Unexplained and odd number conditions of Control-Explained, block 2 = odd number conditions of Control-
Unexplained and even number of Control-Explained).

After a maximum presentation time of each display for 45s, as to constrain and balance out the duration of
information gathering between participants, they had to select their response between the 3 sectorizations
solutions proposed. They then assessed their Confidence in their answer, and for Sierras’s displays their Trust in the
complexity metric (W).

They were able to take a pause (without time constrain) at the middle of the experiment. When done with the 30
trials total, they completed both the Acceptability and Explainability ratings concerning the Explained complexity
metric display.

Analysis

Team performance

We first explore how the presence of the Sierras complexity metric modulate participant choice. To do this, we can
examine the number of changes between the initial choice (Control round) and the choice in the presence of the
complexity metric W (complexity metric round). Our hypothesis is that adding Sierras’s complexity metric
(Unexplained & Explained condition) should generate reversal between the choice in control and complexity metric
rounds, but also that explanation could boost this change rate

The second hypothesis is that giving additional information (KPIs T, P and N and their dynamic) to the display of
Sierrag’s complexity metric would help supervisors to understand this tool and improve their decision-making
process. To do that, we defined the best option amongst the three solutions proposed based on both the complexity
metric and the distribution of the three KPIs, then we compare it to supervisors’ choice regarding this best option
for each condition and round (i.e., Control + Unexplained/Explained complexity metric).

Finally, we specifically explored how the presentation of the dynamic of the KPIs (i.e., evolution through 3 periods
of 20 minutes of their predicted distribution) impacts supervisors’ accuracy. To do that, we manipulated the
adequation between this dynamic and the choice relevant regarding the complexity metric only, as to test if
participants would perceive this change in dynamic and modify their choices. If supervisors use this dynamical
information, a same level of performance for Positive and Alternative dynamics should be observed (that is,
supervisor should change their choice toward the choice supported by this dynamical information). To test that we
compare the sum of participants selections of solutions depending on the dynamic manipulation within the
Explained condition only.
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Confidence and Trust

The following hypothesis considering Confidence and Trust was raised from the potential risk in human-machine
cooperation that the integration of Sierras’s system could lead to. Based on design principles (D2.1), confidence in
participant’s answer (the belief that your choice was correct based on the available evidence) and trust in the
complexity metric (the belief that the complexity metric give an accurate assessment of the complexity of the
situation) is expected to be improved through the addition of Sierras’s tool (i.e., Control vs. Unexplained/Explained),
even further by the explanation of how does Sierras’s tool work (i.e., Unexplained vs. Explained). We therefore
examine Confidence ratings as the average difference between within-trial evaluation (i.e., Confidence in Control
answer — Confidence in Unexplained/Explained answer), and the Trust as the average of ratings per displays (i.e.,
Unexplained vs. Explained trust ratings).

Acceptability and Explainability

The last part of Evaluation 2 is focused on the subjective quality of the Explained display through two important
dimensions of the human-machine cooperation. The first dimension explore the Usefulness and the Satisfaction
associated with the tool assessed. We adjust the Acceptability scale scores from (-2) to (+2) and averaged within
two subscales: items 1, 3, 5, 7 and g for the Usefulness scale; items 2, 4, 6 and 8 for the Satisfying scale. The
Explainability scale scores are also extracted and adjusted from (-2) to (2).

Results are documented in report D4.1.4.3.

4.3 Assessment and conclusions

The validation polls and exercises for Sierras are essential to ensure that the tool aligns with real-world ATC
requirements and effectively assists ATCOs in workload management. The insights and feedback gathered from
ATCOs will be instrumental in refining Sierras, making it a valuable addition to the ATC toolkit. The validation
process will ultimately contribute to safer, more efficient, and more reliable air traffic control operations.

4.4 Conclusions Validation 1

The first validation experiment was designed to evaluate the accuracy and relevance of Sierras’s proposed
complexity metric factoring: total traffic (T), potential conflicts (P), and non-conflicting traffic (N) in assessing air
traffic controllers’ perception of an environment’s complexity. Participants were asked to report their perceived
complexity of some air traffic scenarios of accelerated data recorded from the Austrian airspace. Despite the efforts
to ease the access to the experimental protocol (online survey) and to spread its communication to the targeted
audience through various general and specific network, securing willing participants was a lengthy and resource-
intensive process, highlighting the difficulty of conducting such validations in an operational context.

We collected complete datasets from 8 participants (48.9 year old + 5.1 years; 7 males), with various level of
expertise (2 ATC supervisors, 2 ATC instructors, 4 Radar ATCs) and countries of activity (Czech Republic, Bahrain,
Greece, Singapore, South Africa & Spain). Due to the limited amount of participant, the analysis of the data is mainly
qualitative and cannot rely on most statistical tools. It also prevents us from considering individual variations in
complexity perception ratings.

Scenario’s complexity evaluation

Figure 1. Distribution of dependent ATCOs perceived complexity of the scenarios presented, given the independent complexity
metric calculated by Sierras
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Our main hypothesis was that Sierras’s calculated complexity metric based on T, P & N, would be comparable to
operator’s evaluation of the scenarios. Participants coefficient of correlation between the Sierras’s complexity
metric calculated by Sierras and the complexity ratings made by the participants lead to an average r = .90 (SD =
.07). A one-sample T-test between those coefficients and o — the hypothesis that there is no correlation between
those two complexities — results in p = 1.12x10°. This score is notable and support the hypothesis of a good fit
between Sierras’s calculation and Controllers perceived evaluation of the complexity of air traffic scenarios as
observed in Fig.1. A replication of this evaluation would be valuable on a larger sample of ATCOs to draw general
conclusion.

a) Scenario's complexity evaluation per KPI b) Scenario’s complexity evaluation
z manipulation per KPI manipulation
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Figure 2. Scenario’s complexity evaluation per KPl manipulation

We did test the impact of KPIs manipulations on the observations of perceived complexity as seen in Fig.2. The
manipulations of T, P and N (see a)) do not seem to have an impact on the relationship between complexity metric
controlled and measured. Further consideration of the distance between Sierras’s calculated complexity and
ATCOs rated complexity against each KPI manipulation in Fig 2. b), may imply larger differences between Sierras’s
complexity and participants’ perceived complexity when manipulating Non-Conflicting Traffic (N). This observation
is supported by a small difference in coefficient of correlation between trials with N manipulations’ r=.94 in contrast
to T's r= .99 and P manipulations’ r = .99. There might be a smaller fit between those metrics but this observation
is quite limited per the quantity of participants and the selection of scenarios. As described in D4.1 4.1, we were not
successful in selecting scenarios with the most independent manipulations of KPIs contributions so the results
observed in Fig.2 may be more complex and rely on interactions between the three KPIs selected.
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Figure 2 Figure 3. Distribution of dependent ATCOs perceived complexity of a) & b) the scenarios or c) the sector
presented given the sectors considered within the experiment
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The last hypothesis assumed that further variables impact operator’s ratings such as the complexity associated to
a sector itself. Despite some slight differences in ratings of sector’s complexity at the end of the experiment (as seen
in Fig.3 ¢)), with slightly higher average ratings for E35 in contrast to N35 & S35, this independent variable did not
seem to impact participant’s perception of the scenario’s complexity as illustrated in a) in between scenarios, or b)
at the sector level. Coefficient of correlations are high for each sector responses E35 r=.89, N35r= .89 and S35 r=
.94. Differences between S35 and the other sectors correlation might be explained by a more accurate evaluation
of the 4.5 complexity metric scenario as seen on Fig.3 a). It would be interesting to explore this local difference in
evaluation of the high complexity scenarios.

As for validation of the correlation between complexity metrics, protocol’s replications with larger samples and the
consideration of further independent variables (e.g., nature of the potential conflicts, meteorological events, ...) not
associated with the calculation of Sierras’s (i.e., P, T, & N) complexity metric is recommended.

4.5 Conclusions Validation 2

The second validation exercise aimed to focus on Sierras’s cooperativeness. More particularly, we aim to assess:

e Sierras's ability to support Air Traffic Supervisors in their task to optimize sector configurations through the
complexity measurement provided;

e Sierras’s ability to address potential human-machine cooperation risk such as situational awareness and
trust through two levels of explainability of the complexity metric.

Participants to this exercise were presented with an airspace and solutions of sectorizations. Their task is to choose
the optimal sectorization from 3 possible choices. A first choice (Control round) was performed with only the total
aircraft count (T) presented per sector. Following this first choice, participants received the calculated complexity
metric as a new information and had to decide again the optimal sectorization (complexity metric round). Two
different levels of information were available during this second round: an “Unexplained condition” where
complexity metric was presented with only T count per sectors, and an “Explained condition” where the complexity
metric was displayed with an overview of the supporting KPIs. The protocol addressed variations in objective
performance and subjective evaluations of participants experience of the tool.

Experienced supervisors participated in the validation, bringing expertise in airspace management. We collected
complete datasets from 6 participants (50.7 year old + 8.1 years; 5 males), all supervisors with additional expertise
as ATC instructors, ATC examiner and radar ATCO and various countries of activity (3 from Hungary, 2 from Spain,
1 from Italy). Recruiting supervisors was challenging due to their operational commitments, requiring outreach
efforts such as LinkedIn promotions, aviation congress presentations, and professional networking. Despite these
efforts, securing participants remained a time-intensive process. Due to the limited amount of participant, the
analysis of the data is qualitative and cannot rely on most statistical tools.

Team performance

Reéversed ansvrens b) Accuracy in sectorization's selection
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Figure 1. Evaluation of participants performance with traditional approach: T count as control, and with Sierras’s complexity metric
Unexplained or Explained
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We first explored how the presence of the Sierrag complexity metric modulated participant choice. To do this, we
examined the number of changes between the initial choice (Control round) and the choice in the presence of the
complexity metric W (complexity metric round). Our hypothesis is that adding Sierrag’s complexity metric
(Unexplained & Explained condition) should generate reversal between the choice in Control and complexity metric
rounds, but also that explanation could boost this change rate. When observing the average number of reversals in
response between the Control round (i.e., T only) and the complexity metric round (i.e., same scenario but addition
of the complexity metric, and in the Explained conditions the KPIs) reported in Fig.1 a), supervisors in both
Unexplained and Explained condition modified several of their prior selection. Supervisors are consequently
modifying their former approach to sectorization by weighing in the complexity metric. Surprisingly, we do not
observe any influence of the presence of explanation on this rate of change, indicating that the complexity metric
only is enough to modulate supervisor’s choice. These findings indicate that supervisors use the complexity measure
in their sectorization strategy to optimally divide airspace among available resources, and this whatever the level
of explanation.

We then explored the accuracy of this selection. To do that, we defined the best option amongst the three solutions
proposed based on both the complexity metric and the distribution of the three KPIs, then we compare it to
supervisors’ choice regarding this best option. The hypothesis is that giving additional information (i.e., KPIs T, P
and N and their dynamic) to the display of Sierras’s complexity metric would help supervisors to understand this
tool and improve their decision-making process. We extracted participants answers within each condition and
round (i.e., Control + Unexplained/Explained complexity metric) and their accuracy within those scenarios, as
reported in Fig.1 b). Results indicate that participants accuracy is higher when presented with complexity metric and
detailed values of KPIs and their dynamic through the hour. Supervisors are considering that additional information
and making more optimal segregation of airspace judgments.

Finally, we specifically explored how the presentation of the dynamic of the KPIs (i.e., evolution through 3 periods
of 20 minutes of their predicted distribution) impacts supervisors’ accuracy. To do that, we manipulated the
adequation between this dynamic and the relevant choice regarding the complexity metric only. We defined
“Positive dynamic” as when the dynamic of the KPIs reinforces the optimal solution based on the complexity metric;
“Neutral dynamic” when no difference in KPI distribution occurred between solutions; and “Alternative dynamic”
when two solutions (of the three presented) were closely optimal in complexity distribution but the dynamic of the
KPIs favored the less optimal one (between the two optimal solutions) as to test if participants would perceive this
change in dynamic and modify their choices. If supervisors use this dynamical information, a same level of
performance for Positive and Alternative dynamics should be observed (that is, supervisor should change their
choice toward the choice supporting by this dynamical information). However, the results show a different pattern.
The consequent sum of accurate responses in the Explained condition per the dynamic variable as displayed in Fig.1
¢), show higher accuracy with the “Positive dynamic”, therefore when this information align with Sierras complexity
metric distribution between solutions. In contrast, “Alternative dynamic” seem to be associated with lesser accurate
responses, which could mean that Supervisors did not take into account this alternative solution and preferred to
focus on the optimal complexity metric distribution. It would therefore be important to evaluate how the dynamic
of those KPIs may vary in realistic air traffic scenarios, if they play an important role in ATCOs workload, and if so,
try to integrate them in the calculation of Sierras’s complexity as participants seem to rely on this element even in
presence of the display of KPIs' dynamic.

Confidence and Trust

a) Confidence in the answer b) I'rust in the complexity metric provided

=

Figure 2. Confidence and Trust ratings between conditions of Evaluation 2
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Beyond the impact on performance, an important element concerns the impact of the explanations on the
supervisor's attitudes towards the artificial partner. Particularly, we are first interested in change in confidence (the
belief that your choice was correct based on the available evidence) and trust (the belief that the complexity metric
gives an accurate assessment of the complexity of the situation) regarding the presence or the absence of such
explanations. Questions of confidence followed each answer, and Trust each interaction with Sierras’s tool. Based
on design principles (D2.1), confidence in participant’s answer and trust in the complexity metric is expected to be
improved through the addition of Sierrasg’s tool (i.e., Control vs. Unexplained/Explained), even further by the
explanation of how does Sierras’s tool work (i.e., Unexplained vs. Explained).

Confidence is reported as the average difference between within-trial evaluation (i.e., Confidence in Control answer
— Confidence in Unexplained/Explained answer). Fig.2 a). In contrast to our hypothesis, results indicate no effect of
complexity metric, nor of explanation on the confidence of the supervisors. First, a same level of confidence in
supervisors’ responses is observed for the control round (without complexity metric) than for the complexity metric
round (with the complexity metric). The presentation of the complexity metric does not seem to increase
supervisors’ confidence in their choice. Similarly, the presence of explanation doesn’t appear to improve the
average level of confidence. However, we can observe a more distributed range of responses within the
Unexplained condition, suggesting a more stable level of confidence in presence of explanation. Taking together,
these results indicate that supervisors did not make important changes in their subjective experience of their answer
in presence of the complexity metric, nor in presence of explanations. However, the presence of explanations seems
to make the level of confidence felt more stable.

Yet, when assessing average evaluation of trust (see Fig.2 b), Trust ratings in the complexity metric seem to be
enhanced in the Explained condition. The explanation of the KPIs values used by Sierras for the calculation of the
complexity metric could play an important and positive role in the interaction of the participants with the system.
The explanations would foster the development of trust. This result would benefit from a replication at a larger scale
and an examination of the impact of training and expertise with using Sierras on the evolution of trust.

Acceptability and Explainability

The last part of Evaluation 2 is focused on the subjective quality of the Explained display through two important
dimensions of the human-machine cooperation. The first dimension explore the Usefulness and the Satisfaction
associated with the tool assessed. Every g items of the Acceptability scale were evaluated positively as reported in
Fig.3, yet the usefulness of the complexity metric is highly rated (= 1.9 on a -2/+2 scale), its satisfaction scale (= 1.0
on a -2/+2 scale) seems a bit downgraded. The complexity metric with explanation was therefore well accepted by
the 6 supervisors assessed in this Evaluation, and considered as highly useful but some future work may want to
consider how to improve the satisfaction experienced by the participants through for example evolution of the
display. This observation has to be confirmed at a larger scale with a bigger sample of participants, but more
importantly in a realistic environment while performing an airspace management task.

Useful Good Assisting Effective  Raisingalertness  Pleasant Nice Likeable Desirable
+2
2
Useless Bad Worthless  Superfluous  Sleep inducing  Unpleasant Annoying Irritating Useless
Usefulness scale Satisfaction scale

Figure 3 Figure 3. Acceptability scale ratings of the Explained display

The second dimension, through the Explanation Satisfaction Scale explore an a posteriori judgment of an
explanation provided. It allows to explore understandability, feeling of satisfaction, sufficiency of detail,
completeness, usefulness, accuracy and trustworthiness. The results in Fig.4 indicate high ratings in each of the 7
items assessed by the participants, translating an overall satisfaction in the explanations provided. A lower score
seems to be associated with the last item considering how the system provide information on our accurate the
complexity metric is. Future evaluations should entail follow-up questions to understand what information may be
lacking or inducing doubt on the accuracy of the complexity metric.
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Figure 4. Explanation satisfaction scale ratings of the Explained display
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Annex | - Sierra 5 Complexity Metric initial
assessment

1 Detailed Explanation of Exercises Conducted with Air Traffic Controllers
for Complexity Ranking

Introduction

A series of simulation exercises were conducted as part of a technical evaluation to analyze how ATCOs perceive
and rank the complexity of various air traffic scenarios. This study was intended to validate the SafeTeam
complexity metric and, ultimately, contribute to the optimization of airspace design and decision-support tools.

Objective of the Exercises

The primary objective of these exercises was to evaluate the subjective (perceived) complexity of real air traffic
scenarios as perceived by ATCOs with varying levels of experience. By presenting a range of controlled scenarios
with differing traffic compositions, the study aimed to capture insights into the factors that influence perceived
workload and situational complexity and, particularly, compare the ATCO's perception on complexity with the
SafeTeam calculated metric.

Participants

The exercises involved eight Air Traffic Controllers (ATCO1 to ATCO8) from diverse operational backgrounds,
representing a wide range of experience levels (from 8 to 28 years) and with experience in different regions and air
navigation service providers (ANSPs), including Spain, Panama, UAE, Bahrain, Qatar, Singapore, and the UK. This
diversity ensured a broad spectrum of perspectives influenced by varying operational procedures, airspace
characteristics, and cultural factors in ATM practices. The inclusion of controllers with different years of experience
allowed for an analysis of how expertise impacts the perception of scenario complexity.

Simulation Setup

The exercises were conducted using a controlled environment reproducing real, historical, air traffic scenarios. Each
scenario was characterized by four key parameters that collectively defined the traffic composition and potential
conflict load:

1. Total Number of Flights: Representing the overall volume of aircraft under control within the simulated
sector. This ranged from 20 to 60 flights across the scenarios.

2. Number of Potential Conflicts Detected (PCDs): Indicating pairs of aircraft that were identified as having
a risk of loss of separation based on predefined criteria (e.g., proximity in altitude, lateral distance, or
converging trajectories). PCDs ranged from o to 40 per scenario.

3. Number of Non-Conflicting Traffics (NCTs): Representing aircraft that did not pose any immediate conflict
risk with other flights but still required monitoring and coordination. NCTs ranged from o to 5o.

4. Rest of Traffics: Defined as the remaining aircraft that were neither classified as PCDs nor NCTs, ranging
from o to 30.

A total of 19 distinct scenarios were developed by varying these parameters to create a spectrum of low-to-high
complexity situations. Additionally, the scenarios were grouped based on Declared Airspace Capacity, which
represents the maximum number of traffics that the simulated sector was designed to handle safely under normal
operating conditions. For the first 12 exercises, the declared airspace capacity was set at 5o traffics, while for the
following 7 exercises, it was set at 30 traffics. This variation in capacity allowed for an assessment of complexity
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perception in relation to sector saturation levels, providing insight into how controllers perceive workload when
traffic volumes approach or exceed capacity thresholds.

Methodology

Each ATCO was tasked with evaluating all 19 simulation scenarios independently. After observing each scenario,
they were asked to assign a complexity rating on a scale of o to 10, where:

e orepresented an extremely simple scenario with minimal workload or cognitive demand.

e 10 represented an extremely complex scenario with significant workload, high cognitive demand, and
challenging conflict resolution requirements.

The ratings provided by each ATCO reflected their subjective assessment of the difficulty in managing the given
traffic situation based on factors such as the number of conflicts to resolve, the density of traffic, the need for
tactical interventions, and overall situational awareness requirements. The simulations did not involve real-time
control tasks; instead, they focused on observation and post-scenario evaluation to isolate complexity
perception from performance metrics.

Data Collection

For each of the 19 scenarios, data was recorded on:
e The defining parameters (Total Flights, PCDs, NCTs, Rest of Traffics).
e Theindividual complexity ratings assigned by each of the eight ATCOs.
e The ATCOs profiling characteristics

e The Sierras computed metric for each scenario. This resulted in a comprehensive dataset capturing both
objective scenario characteristics and subjective controller perceptions. The diversity in ratings across
ATCOs also allowed for an exploration of inter-individual variability influenced by experience levels (ranging
from 8 to 28 years) and regional operational differences. The inclusion of declared airspace capacity as a
parameter further enriched the dataset by providing context on how perceived complexity correlates with
sector design limits.

Conclusion

These simulation exercises represent a structured approach to quantifying perceived complexity in air traffic control
through direct input from experienced professionals, enabling its comparison with the Sierras computed metric. By
systematically varying key parameters such as total flights, potential conflicts, non-conflicting traffics, alongside
considering declared airspace capacities (5o traffics for the first 12 scenarios and 30 traffics for the last 7 scenarios),
a reliable understanding of workload drivers was achieved. Through this exercises, we could confirm the relevance
of the KPIs used for the defined Sierrag metric.
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Results

Workload 1-10
ATCO1 |ATCO2 [ATCO3 |ATCO4 |ATCOs5 |ATCO6 |ATCO7 ATCOS8
Experience > |25Y 22Y 19Y 14Y 8Y 23Y 14Y 28Y
Capacity |Total |PCD [NCT |Rest Spain |Spain |Panama |UAE |Bahrain |Qatar |Singapore |UK
50 60 (30 |10 |20 9 9.5 10 10 8 10 10 9
60 |20 |30 |10 8.5 9 9 9 7 7 9 8
60 |10 (30 |20 7.8 8 7 8 4 5 8 7
60 |10 |50 |o 7.9 7 6 7 2 2 8
6o |o 40 |20 5.5 5 5 1 2 1 7 4
50 |40 |5 |5 9.5 9 9 8 9 10 10 9
50 (30 |10 |10 8.8 8.5 7 7 8 8 9 8
50 |10 |30 |10 6.4 6 6 5 7 4 8 6
40 |30 |10 o 8.4 8 8 7 7 7 9 7
40 |20 |10 |10 8 6.5 6 6 6 6 8 6
40 110 |20 |10 7-9 5.5 5 5 5 3 7 5
30 |20 |o 10 8 6.5 7 4 5 3 7 6
30 40 10 |10 |30 4 4 5 1 4 2 7 4
40 |5 20 (15 6 4.5 6 1 4 3 8 4
40 |10 |20 |10 7.8 6 7 3 4 7 9 6
40 |15 |0 25 8.3 7 8 4 5 8 10 8
20 |15 |5 o} 8.1 6.5 7 4 5 5.5 8 5
20 (20 |o o} 8.8 7 10 6 6 6 9 6
20 |10 |5 |5 7 5 8 4 5 4 7 4
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St Complexity Poll average Sigma |Capacity |[PCD |[NCT |S5 Complexity Comparison
8.8 9.4 0.7 10.0 0.79 [0.83 (8.8 93.68%
7.8 8.3 0.9 10.0 0.69 |0.50 |7.8 93.52%
7.2 6.9 1.5 10.0 0.55 |0.50 |7.2 105.13%
6.5 5.7 2.4 10.0 0.55 |0.17 |6.5 113.89%
4.7 3.8 2.2 10.0 0.00 |0.33 |4.7 122.40%
9.5 9.2 0.7 10.0 0.93 |0.90 |9.5 103.55%
9.0 8.0 0.7 10.0 0.84 [0.80 |9.0 111.65%
7.1 6.1 1.2 10.0 0.58 |0.40 |7.1 118.00%
8.3 7.7 0.8 8.0 0.91 |0.75 |8.3 108.59%
7-9 6.6 0.9 8.0 0.79 |0.75 7.9 120.00%
6.7 5.4 1.5 8.0 0.63 |0.50 |6.7 123.87%
7-9 5.8 1.7 6.0 0.87 [1.00 |7.9 135.82%
5.5 3.9 1.8 10.0 0.00 |0.75 |5.5 141.94%
7.0 4.6 2.1 10.0 0.50 |0.50 |7.0 153.42%
7.5 6.2 2.0 10.0 0.63 |0.50 |7.5 120.80%
8.9 7-3 1.9 10.0 0.72 [1.00 |8.9 121.91%
7.8 6.1 1.5 6.7 0.91 |0.75 |7.8 127.10%
8.7 7-4 1.7 6.7 1.00 |[1.00 |(8.7 117.91%
7.3 5.5 1.6 6.7 0.79 |0.75 (7.3 133.48%

3 Correlation Analysis and Conclusions

Complexity Rankings

This analysis focuses on the relationships between scenario parameters (Total Flights, Potential Conflicts Detected
(PCDs), Non-Conflicting Traffics (NCTs), and Rest of Traffics) and the complexity ratings assigned by the eight
ATCOs. Additionally, it address the dispersion of the dataset, the relative ranking of low and high complexity

from Air Traffic Controller

scenarios, and the potential influence of experience (years of service) on the evaluations.

1. Correlation Analysis

The Pearson correlation coefficients between each parameter are calculated together with the average complexity
rating across all ATCOs for each of the 19 scenarios. The correlation coefficient ranges from -1 to 1, where a value
close to 1 indicates a strong positive relationship, a value close to -1 indicates a strong negative relationship, and a

value near o suggests little to no linear relationship.

e Total Flights and Average Complexity Rating: The correlation coefficient is approximately 0.62, indicating
a moderate positive relationship. This suggests that as the total number of flights in a scenario increases,
the perceived complexity tends to increase as well. Higher traffic volumes likely contribute to greater

monitoring demands and workload.
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e Potential Conflicts Detected (PCDs) and Average Complexity Rating: The correlation coefficient is
approximately 0.85, showing a strong positive relationship. This is one of the most significant findings, as it
highlights that the number of potential conflicts is a primary driver of perceived complexity. Scenarios with
more PCDs are consistently rated as more complex, reflecting the cognitive demand associated with
conflict detection and resolution tasks.

e Non-Conflicting Traffics (NCTs) and Average Complexity Rating: The correlation coefficient is
approximately -0.15, indicating a weak negative relationship. This suggests that an increase in non-conflicting
traffics does not significantly contribute to perceived complexity and may even slightly reduce it.

e Rest of Traffics and Average Complexity Rating: The correlation coefficient is approximately -o0.25,
showing a weak negative relationship. Similar to NCTs, an increase in non-critical traffics does not strongly
influence complexity perception, as these aircraft typically do not demand immediate attention or tactical
actions.

These correlations indicate that among the parameters tested, the number of Potential Conflicts Detected has the
strongest impact on how complex a scenario is perceived by ATCOs, followed by the Total Number of Flights.
Parameters like NCTs and Rest of Traffics appear to play a lesser role in driving complexity perception. This result is
consistent with the Sierrag metric, where the PCDs have a squared direct relationship, while the NCTs and the rest
of the traffic are inversely proportional.

2. Dispersion of the Dataset

To assess the dispersion or variability in the dataset, it was examined the range and standard deviation of
complexity ratings across all ATCOs for each scenario, as well as across scenarios for each ATCO. Dispersion
provides insight into the consistency of ratings among controllers and whether there is consensus on perceived
complexity.

e Variability Across ATCOs per Scenario: For most scenarios, the standard deviation of ratings among the
eight ATCOs ranges between 1.0 and 2.5 points on the o0-10 scale. This indicates moderate variability in
individual perceptions of complexity. For instance, in high-complexity scenarios (e.g., those with high
PCDs), some ATCOs might rate them as g or 10, while others might assign a 7 or 8. Similarly, in low-
complexity scenarios, ratings might range from 1 to 5. This variability suggests that personal factors such
as experience, training background, or regional operational differences may influence subjective
assessments.

e Overall Range Across All Ratings: The full range of ratings spans from 1 to 10 across all scenarios and
ATCOs, showing that the dataset captures perceptions across the entire spectrum of complexity. However,
the interquartile range (middle 50% of ratings) is narrower, typically falling between 5 and 8.5, indicating
that most ratings cluster around moderate to moderately high complexity levels rather than extreme lows
or highs.

The moderate dispersion suggests that while there is general agreement on what constitutes high or low complexity
(as evidenced by trends in average ratings), individual differences lead to noticeable variation. This could reflect
differing thresholds for workload tolerance or varying interpretations of situational demands.

3. Relative Ranking of Low and High Complexity Scenarios

To understand how low-complexity and high-complexity scenarios are ranked relative to each other, it was
computed the average rating for each scenario across all ATCOs and identified the extremes.

e High-Complexity Scenarios: Scenarios with higher numbers of PCDs consistently received the highest
average complexity ratings. For example, the scenario with 60 total flights and 30 PCDs achieved an average
rating of around 9.4, with several ATCOs assigning it a score of 10. Another notable high-complexity
scenario was with 5o total flights and 40 PCDs, averaging around g.2. These results align with the strong
positive correlation between PCDs and perceived complexity, confirming that potential conflicts are a
dominant factor in workload perception.
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e Low-Complexity Scenarios: Scenarios with zero or very few PCDs received the lowest average ratings. For
instance, the scenario with 60 total flights (the busiest case) but o PCDs averaged around 3.9, with some
ATCOs rating it as low as 1 or 2. Similarly, a scenario with only 4o total flights, no PCDs, and a high
proportion of Rest of Traffics averaged around 3.9. These lower scores suggest that without conflict
resolution demands, even relatively high traffic volumes are perceived as manageable.

e Relative Spread: High-complexity scenarios generally have average ratings clustering tightly between 8.5
and 9.5, indicating strong consensus on their difficulty. In contrast, low-complexity scenarios show greater
spread in averages (ranging from about 3 to 5), suggesting less agreement on exactly how simple these
situations are, possibly due to differing interpretations of monitoring workload even in non-conflict
situations.

This analysis reveals that while high-complexity rankings are more uniform due to clear drivers like PCDs, low-
complexity rankings are more variable, potentially influenced by secondary factors like traffic density or individual
controller strategies for handling routine tasks.

4. Influence of Experience on Evaluation

To explore how experience (years of service) might influence complexity evaluations, it was analyzed trends by
comparing the ratings of ATCOs grouped by experience levels: less experienced (8-14 years), moderately
experienced (19-23 years), and highly experienced (25-28 years). Correlations between years of experience and
average ratings per ATCO across all scenarios were also computed.

e Correlation Between Experience and Ratings: The correlation coefficient between years of experience
and average rating per ATCO is approximately -0.35, indicating a weak negative relationship. This suggests
that more experienced controllers tend to assign slightly lower complexity ratings overall compared to less
experienced ones. For example, ATCOs (8 years) often rated scenarios higher (average rating around 5.6)
compared to ATCO8 (28 years), who had an average rating closer to 6.2 but was more conservative on
extreme highs.

e High-Complexity Scenarios: In scenarios with many PCDs, less experienced controllers (e.g., ATCO5 with
8 years) frequently assigned maximum or near-maximum scores (9 or 10), while highly experienced
controllers (e.g., ATCO8 with 28 years) were slightly more restrained, often scoring between 8 and 9. This
could indicate that experienced controllers have developed better confidence in managing conflicts, thus
perceiving them as marginally less complex.

e Low-Complexity Scenarios: For simpler scenarios with few or no PCDs, less experienced controllers
showed greater variability in their ratings (ranging from 2 to 5), while experienced controllers were more
consistent (often rating between 4 and 6). This may suggest that newer controllers are more sensitive to
subtle differences in workload even in easier situations, whereas veterans apply a more standardized
assessment based on broader benchmarks.

e Regional/Experience Overlap: It's worth noting that experience often correlates with operational
background (e.g., different regions), which could confound pure experience effects. However, within similar
experience brackets (e.g., ATCO4 and ATCO7 both at 14 years), ratings are still somewhat dispersed, hinting
that personal factors beyond just years of service play a role.

Overall, while there is evidence that greater experience slightly tempers the perception of complexity the effect is
not very strong. Other factors like individual temperament or specific training may also mediate how experience
translates into evaluation.

Conclusions

Based on this analysis, several key conclusions can be drawn for application in Air Traffic Management contexts:

e Primary Driver of Complexity: The number of Potential Conflicts Detected stands out as the most significant
factor influencing perceived complexity, far beyond total traffic volume or other categories like NCTs.
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e Moderate Dispersion: The dataset shows moderate variability in ratings among controllers, reflecting
subjective differences in workload perception. While consensus exists on extreme cases (very high or very
low complexity), intermediate scenarios have varied responses.

e High vs. Low Complexity Perception: High-complexity scenarios are uniformly recognized as challenging
due to clear indicators like numerous conflicts, whereas low-complexity rankings are less consistent,
potentially due to differing views on baseline workload elements like monitoring non-critical traffic.

e Experience Influence: Experience has a medium-low effect on complexity perception, with veteran
controllers tending to rate scenarios slightly lower than less experienced ones; however, since the effect is
not dominant, broader human factors should also be considered.

4 Comparison: Sierrag Complexity Metric

The Sierras (S5) complexity metric appears to be an effective measure for evaluating the complexity of air traffic
control simulation exercises based on the comparison of the S5 Complexity scores to the average complexity ratings
provided by the eight Air Traffic Controllers. One limitation of this study lies in comparing a subjective, experience-
based perception with an objective, mathematically derived metric. Accordingly, the comparison needs to be
performed more in a qualitative way, comparing the rankings rather than the actual values of the metric. The
following points support why the S5 metric aligns well with expert judgment and can be considered a robust
indicator of scenario complexity:

e Close Alignment with Average Expert Ratings: The data shows a strong correlation between the Ss
Complexity scores and the Exercise Average scores (the mean of the ATCOs' individual ratings). Particularly:

o Inscenarios with high complexity, such as the first exercise (S5 = 8.8, Average = 9.4) and the sixth
exercise (S5 = 9.5, Average = 9.2), both metrics consistently indicate high difficulty.

o Inlower-complexity scenarios, such as the fifth exercise (S5 = 4.7, Average = 3.8) and the thirteenth
exercise (Sg = 5.5, Average = 3.9), both metrics similarly reflect reduced complexity.

This consistent alignment suggests that the S5 metric captures similar aspects of complexity as perceived by
experienced ATCOs, validating its relevance.

e Consistency Across a Range of Scenarios:

o Across all 19 exercises, the S5 Complexity scores rarely deviate significantly from the Exercise
Average. Even in cases of slight divergence, such as the twelfth exercise (S5 = 7.9, Average = 5.8) or
the fourteenth exercise (S5 = 7.0, Average = 4.6), the general trend remains comparable.

This indicates that the S5 metric is stable and reliable across different types of simulation exercises, which likely
vary in terms of total flights, Potential Conflicts Detected (PCDs), non-conflicting traffics (NCTs), and other traffic
factors.

e Potential for Capturing Underlying Factors: The S5 metric may incorporate a balanced consideration of
multiple variables or KPIs (e.g., total number of flights, PCDs, NCTs, and other traffic) in a way that mirrors
how experienced ATCOs intuitively assess complexity. While individual ATCO ratings might be influenced
by subjective factors or specific experiences, the S5 metric provides a standardized and objective
benchmark that closely matches their collective judgment (Exercise Average).

e Practical Implications: The close correspondence between S5 Complexity and the Exercise Average implies
that Sg can serve as a reliable tool for assessing complexity without needing to rely solely on subjective
human ratings.
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