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Abstract 
The SafeTeam project aims to investigate the power of digital assistants and how new technique can 
improve safety in the aviation domain and incorporating human factors theory to ensure that safety 
measures are followed throughout the implementation process. In particular, SafeTeam project has 
developed a framework with the purpose of helping individuals who lack expertise in human factors 
to consider such aspects and improve human-autonomy collaboration. Part of this framework 
considers how to quantify the impact of the digital assistant proposed on critical human dimensions.  

The work presented in this deliverable describes the process of selecting relevant metrics for 
practitioners interested in quantifying and characterizing the impact of the introduction of artificial 
agents on human operators. To guide this choice, this deliverable proposes a selection of metrics for 
each dimension of interest. It also specifies, for each metric, the expertise required to administer this 
metric, the time required to administer and/or compute this metric, the material necessary to 
administer this metric and the moment of the moment when it should be administered. 
Commentaries and limitations regarding each metric are added to help evaluators with their choice. 
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1 Introduction 

1.1 Background 

The aviation industry is undergoing a significant transformation, with the integration of intelligent 
digital assistants and increasing levels of automation becoming central to future operational 
concepts. While these innovations offer significant potential to enhance safety, efficiency, and 
resilience, they also introduce new challenges, particularly concerning human performance, trust, and 
human-machine collaboration (Halawi, Miller, & Holley, 2024; Kirwan, 2023). A key issue in this 
context is the lack of accessible human factors (HF) evaluation methods and criteria that can be 
reliably applied to assess and guide the integration of these technologies, especially by stakeholders 
who may not be HF experts. 

This gap is particularly problematic given that human error remains a predominant contributor to 
aviation incidents and accidents (Mathavara & Ramachandran, 2022). As automation becomes more 
capable, there is a risk that poorly designed interactions can exacerbate human performance issues 
such as complacency, workload mismanagement, and the well-documented Out-Of-The-Loop 
(OOTL) phenomenon (Endsley & Kiris, 1995; Gawron, 2019). Without clear guidance or usable 
evaluation frameworks, designers, operators, and regulators alike may struggle to ensure that digital 
assistants truly support—rather than undermine—the human operators they are meant to help. 

The SafeTeam project—and specifically this work package (WP2)—aims to address this challenge. In 
Deliverable 2.1 (D2.1), a simplified design guide was introduced to support the integration of human 
factors into system design, even for non-experts. D2.1 presented a structured, iterative approach for 
modelling human-autonomy teaming (HAT) and incorporating human factors from the early design 
stages. This report, Deliverable 2.2 (D2.2), builds on that foundation by focusing on how to evaluate 
human performance and human-machine collaboration in the context of these systems. 

The objective of this report is to present an accessible and practical framework for defining and 
selecting metrics and procedures to access the human side of digital assistant integration. The goal is 
to enable a wide range of stakeholders—including designers, developers, assessors, and end users—
to evaluate how automation affects human performance and to ensure safe and effective 
collaboration between humans and machines. This framework is particularly designed to be 
applicable across different operational case studies, thereby contributing to the generalisability and 
scalability of the SafeTeam approach across the aviation domain. 

1.2 Theoretical foundations 

The SafeTeam framework is grounded in core concepts from HF, Cognitive Systems Engineering 
(CSE), and Human-Autonomy Interaction (HAI), with a particular focus on supporting non-expert 
users in understanding and evaluating the impact of automation. At its core is the recognition that 
automation in complex socio-technical systems, such as aviation, must be designed not only for 
technical performance but also for human compatibility, situation awareness, and cognitive 
resilience. 

Human Factors and Ergonomics (HF/E) aim to optimize the interaction between people and systems 
by designing technologies, tasks, and environments that align with human capabilities and limitations 
(Salvendy, 2012). Within aviation, HF is critical to ensure that digital assistants enhance—rather than 
compromise—performance, safety, and trust (Kirwan, 2023). As automation becomes more 
autonomous and less transparent, the need to actively design for explainability, control, and mutual 
understanding becomes paramount (Hoffman et al., 2023). 
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Human-Autonomy Teaming (HAT) expands traditional Human-Autonomy Interaction (HAI) by 
framing automation as a cooperative agent rather than a tool. This perspective highlights the 
importance of shared goals, mutual observability and directability, and adaptive coordination 
strategies. In high-stakes environments like flight operations or air traffic control, effective teaming 
between human and automated or autonomous agents must consider trust calibration, workload 
management, and the preservation of operator agency. 

To address these challenges, the SafeTeam approach introduces a structured, iterative methodology 
that draws on several theoretical foundations: 

• Levels of Automation (LOA), such as the Sheridan and Verplank scale (Sheridan & Verplank, 
1978), which help classify the degree of autonomy in system functions and inform appropriate 
task allocation between human and machine. 

• Function allocation principles, particularly the updated HABA-MABA (Humans Are Better At 
/ Machines Are Better At) approach, which encourages evaluating tasks based on strengths 
and limitations of each party in dynamic, context-dependent ways (Dekker & Woods, 2002). 

• OOTL performance problem, which describes the cognitive risks associated with operators 
being disengaged from the system due to excessive or opaque automation (Endsley & Kiris, 
1995). 

• Transparency and situation awareness frameworks, which emphasize the importance of 
understanding system intent and state for maintaining effective human performance 
(Endsley, 1996). 

These foundations were operationalized in D2.1, where a process was developed for non-experts to 
assess human-autonomy collaboration in the design phase. D2.2 extends this by focusing on the 
evaluation phase; specifically, how to select and use metrics to monitor performance, diagnose risks 
like OOTL, and support iterative improvement. To keep this report focused and accessible, a full 
recapitulation of the theoretical underpinnings of the design framework (and the models and 
processes of the design framework itself) is avoided here, but readers are encouraged to refer to D2.1 
for a detailed exposition. 

1.3 Outline 

This document provides a practical guide for evaluating human-machine collaboration in systems that 
incorporate intelligent digital assistants. Building on the HF design principles established in D2.1, this 
report focuses on how to assess and monitor human performance, particularly in relation to 
collaboration, safety, and resilience. 

The structure of the document is as follows: 

• Section 2: Process Description 

Before evaluation can begin, the system under assessment must be clearly defined. This 
includes understanding who the end users are, how the system is intended to be used, what 
problems it aims to solve, and what the potential implications are for safety, efficiency, and 
user satisfaction. For those who followed the design framework in D2.1, much of this 
information will already be documented. For others, this section outlines the minimum 
information required to proceed with a meaningful evaluation. 
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• Section 3: Metrics Selection Process 

This section guides practitioners through the process of selecting appropriate evaluation 
metrics. It includes practical considerations such as feasibility, constraints, and the influence 
of system characteristics (e.g., level of autonomy, type of interaction). Various parameters 
influencing the choice of metrics and selection criteria are presented to drive the practitioners 
to ask the right questions and consider the essential aspect for their study when considering 
Human-system interactions assessment.  

• Section 4: Selected metrics 

This section lists many metrics available in the literature to evaluate human-system 
interaction in the dimensions addressed by the SafeTeam framework. Metrics are grouped 
into categories and suggestions are provided for combining methods through triangulation. 
Guidance is also offered on data collection techniques, (e.g., questionnaires, eye-tracking, 
observation) and on how to match evaluation methods to the specifics of the case at hand. 
All the assessment parameters presented so far (practitioner’s expertise, time requirement, 
material necessary, etc.) are considered and associated to each metric individually in order to 
provide a synthesis for practitioners to support their evaluation and select the appropriate 
metrics. 

• Appendices 

To keep the main report concise and accessible, examples and more detailed illustrations of 
the process are included in the appendices. These include adapted SafeTeam case studies and 
visual tools such as flowcharts or decision aids. 

Each section is intended to be usable on its own, but together they provide a complete guide; from 
scoping the evaluation to selecting and applying metrics in operational or simulated settings.  
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2 Process Description 

2.1 Case description 

To effectively evaluate human-machine collaboration, it is important to first define the system under 
assessment in sufficient detail. Evaluation is only meaningful when it is grounded in a clear 
understanding of the system’s purpose, how it is used, and by whom. This section outlines the 
minimum information needed to support metric selection and performance evaluation. 

Core Elements for Evaluation 

Practitioners should begin by clarifying the following aspects of their system: 

• End Users 

Who are the people interacting with the system? What are their roles, responsibilities, 
training levels, and relevant constraints? Understanding the user population is important for 
choosing appropriate metrics and interpreting results. See ISO (2019) for further reading. 

• Use Context 

In what operational setting is the system deployed or intended to be deployed? What are the 
environmental, procedural, and organizational conditions that frame its use (e.g., cockpit 
operations, ATC tower, training simulator)? Are there critical moments of use (e.g., high 
workload, emergency scenarios)? See ISO (2019) for further reading. 

• Envisioned Human-System Interaction 

How does the system support or collaborate with the user? What is the level of automation, 
the degree of user control or supervision, and the nature of feedback and information 
exchange? This includes understanding whether the system operates in real time, offer 
recommendations, or autonomously takes action. See Stanton et al. (2013) and Kirwan and 
Ainsworth (1992) for relevant methods. 

• Design Goals and Intended Benefits 

What problems or gaps is the system designed to address? Are the goals primarily safety-
related (e.g., reducing error), performance-related (e.g., increasing throughput), or 
experiential (e.g., improving trust or user satisfaction)? 

• Potential Implications for Safety, Efficiency, Satisfaction 

What are the anticipated risks or benefits of introducing the system? This includes changes in 
workload, situation awareness, human error, communication patterns, or training needs. 
These anticipated effects will help focus the evaluation on what matters most. See Stanton 
et al. (2013) and Kirwan and Ainsworth (1992) for a selection of methods. 

Starting Point: With or Without D2.1 

For readers who have designed their system using the SafeTeam design framework from D2.1, much 
of this information will already be available. The output from D2.1, such as the Hierarchical Task 
Analysis (HTA), agent roles, and identified design considerations, can be directly reused as input to 
the evaluation process. 
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For those entering at the evaluation stage without having followed D2.1, we strongly recommend 
documenting the above points before selecting metrics. This documentation does not need to be 
exhaustive, but it should provide a shared understanding across stakeholders (designers, evaluators, 
end users) of what the system is (structural), what it is supposed to do (functional), and what 
constitutes success. 

Summary: Minimum Required Information 

At a minimum, the following elements should be available before metric selection begins: 

• A description of the system and its operational context 

• A definition of the user population and use scenarios 

• A high-level model of the human-system interaction (e.g., tasks, control flow, feedback loops) 

• A list of targeted outcomes or concerns (e.g., reduced workload, increased situation 
awareness or trust) 

• Known constraints (e.g., time, access to users, technical limitations) 

This shared understanding serves as the foundation for identifying what to measure, why, and how. 
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3 Metrics Selection Process 

3.1 Evaluation methodology: Experimental approach  

The aim of the methodology is to explore the impact of proposed design choices on human-system 

cooperation. This implies being able to quantify this impact rigorously. However, this quantification 

comes up against a major challenge: the variability of human behavior. This behavioral variability 

results from the fact that each behavior depends on different characteristics: 

• Characteristics specific to the situation, 

• Characteristics specific to the subject (history, expertise, biological characteristics). 

 

The experimental method is traditionally used to put the human operator in a controlled situation and 

to analyze his activity through different levels of analysis (subjective, behavioral, or physiological). 

This approach is based on a probabilistic principle which, with reference to a database, makes it 

possible to account for the probability that certain events, under certain conditions, may be 

correlated. This gives rise to a principle in which an attempt is made to generalize from a small sample 

(Campbell & Stanley, 1963; Millsap & Maydeu-Olivares, 2009).  

Experimentation therefore consists of creating (or isolating) sources of variation and checking that 

the variations induced are statistically significant compared with simple chance. These sources of 

variation that we are trying to test are what we call independent variables, i.e. variables that we are 

going to manipulate voluntarily and that are supposed to have an impact on the phenomenon to be 

measured. The induced variations that we are seeking to measure are dependent variables. These 

dependent variables are selected to best represent the factors we wish to assess (e.g., cognitive load, 

fatigue, performance, etc.). These two elements (situations in which the subjects are placed and 

measurements) constitute an experimental paradigm (Campbell & Stanley, 1963; Millsap & Maydeu-

Olivares, 2009).  

In order to ensure that the effects observed are not the result of chance or of factors other than those 

being manipulated, the experimental approach ensures (1) that the conditions being compared differ 

only in the variable being manipulated, and (2) that the participants carry out a sufficient number of 

repetitions. Finally, to control the influence of all the other variables likely to influence behaviour 

(fatigue, learning), it is important to account for the order of the trials and the counterbalancing 

between conditions: this is known as the experimental design (Campbell & Stanley, 1963; Millsap & 

Maydeu-Olivares, 2009). 

All the choices made (independent variables, dependent variables, experimental paradigm, 
experimental design) constitute the experimental protocol. The main objective of this document is to 
define the dependent variables, i.e. the measures, that will be collected to characterise the impact of 
the proposed manipulations on human AI cooperation. 

3.2 Metric selection: Required properties  

Several criteria exist and have been proposed as guidelines for selecting and developing techniques 
(Wierwille and Eggemeier 1993; NASA 2014; Matthews et al. 2015; Longo 2015; Heard, Harriott, and 
Adams 2018).  

The first set of criteria establishes most directly the validity of the measure. That is, the measure 
should reflect changes in the dimension measured (sensitivity) but no change in other constructs that 



   

 

Page I 11 
 

  

 

are not directly reflective to this dimension (selectivity). Moreover, the measure should be able to 
distinguish the sources responsible for the change (diagnosticity). While each single measure will not 
be able to respond to all these criteria, it is rather the combination of measures that should fulfil these 
properties. As there is no universal ideal combination of measure for all tasks and all contexts, it is 
necessary to define for which level the measure is relevant (range) and whether the measure is 
dedicated to specific tasks or can be used in different tasks (transferability). 

• Sensitivity: Capacity to detect changes in the cognitive state investigated. The sensitivity of 
the measure describes the extent to which the measure changes when this cognitive state 
changes. 

• Selectivity or reliability: Reflects the sensitivity only to differences in the cognitive state 
explored, not changes in other variables. It describes how consistently the measure will 
change when and only when this cognitive state changes. 

• Diagnosticity: Capacity to differentiate distinct sources resulting in change of the cognitive 
state explored. 

• Bandwidth or range: Relates to the region where the metric is reliable for the cognitive state 
explored. For example, when considering workload, range corresponds to the level of 
workload (underload, fitting load, overload) within which the measure reliably reflects 
workload changes. 

• Transferability: Consistent assessment of the cognitive state explored both within and across 
tests that allow it to be used in different applications. 

• Temporal resolution: Relates to the time window necessary to compute the metric. The 
smaller the global required time, the better the temporal resolution.  

  
The second set of factors is essential for ecological contexts and focuses on elements that may lead 
to turn down specific measurements. It emphasizes possible interference with the required task 
(intrusiveness), but also unsuitable technical requirements associated with the measurement 
technology, and the question of operator acceptance: 

• Intrusiveness: Lack of interference with task performance; moreover, the measure should 
not be a source of change in the dimension observed, or in any other dimension. 

• Implementation requirements: Practical constraints associated with instrumentation, 
software, and training. 

• Acceptability: Operator perception of the validity and usefulness of the procedure.  
 

If sensitivity is always a major consideration in the choice of a measurement technique, other criteria 
may be particularly relevant, especially when the experiment is not a laboratory task. Notably, 
intrusiveness, implementation requirements and operator acceptability appear as a first concern in 
SafeTeam methodology as the methodology is intended to be used by non-expert practitioners in 
ecological environment. For example, intrusiveness of the measuring system (the hardware for 
physiological measures as well as the frequency and length of interruptions for subjective ones) may 
lead to the Hawthorne effect – or a halo effect of social desirability (Krumpal, 2013) – rendering the 
results untrue in a real-life scenario. Decreasing the intrusiveness of the experimental set-up would 
make it less likely to observe such behavior. Acceptability may be of great significance in a real 
operational environment, while the implementation requirements (and also the complexity of the 
analysis) can clearly have an impact on the ability of non-HF experts to use this method.  

Based on these various constraints, a number of useful metrics will be proposed in the remainder of 
this document. 
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3.3 Categories of measurements 

Evaluation data can be collected from multiple perspectives or viewpoints to enable broad and rich 
insights into the qualities and integration effects of a product. These perspectives include: 

• Task performance: Quantifiable measures such as time-on-task, error rates, number of 
actions, and end states, gathered through manual recording or system logs. 

• Participant self-assessments: Subjective ratings collected via validated or customised scales 
capturing constructs like workload, situation awareness, perceived performance or difficulty, 
and usability. 

• Behavioural observation: External assessment of participant behaviours during interaction, 
conducted in real-time by observers or retrospectively via video analysis. 

Orthogonal to these perspectives is the distinction between objective and subjective data types. 
Though often positioned as opposites, in practice they serve complementary roles in evaluation. 
Objective measures aim to capture observable, quantifiable phenomena, such as the time taken to 
complete a task, the number of actions performed, or error rates. These data are valued for their 
repeatability and reduced susceptibility to personal biases. However, they can overlook important 
internal experiences like perceived effort, frustration, and strategic decision making that are not 
easily observable (Jahedi & Méndez, 2014). 

Subjective measures, on the other hand, captures the participant’s internal state or personal 
evaluation, for example through self-reported workload, situation awareness, or satisfaction. 
Although subjective ratings are inherently influenced by individual perceptions, emotions, and 
memory biases, they provide insights into the user experience that objective measures alone cannot 
reveal (Muckler & Seven, 1992). 

Importantly, the distinction is not always clear-cut; an observation by a third party (like an expert 
rating a user’s performance) may be considered “objective” in form but still carries interpretive 
subjectivity. Likewise, physiological measures (e.g., heart rate variability, eye-tracking, or EEG) are 
technically objective but may require subjective interpretation regarding their meaning in context 
(Muckler & Seven, 1992). 

Combining these multiple sources and perspectives enable triangulation of findings, offering a more 
comprehensive and reliable evaluation (Denzin, 2017). While objective performance metrics provide 
hard data on outcomes and efficiencies, subjective assessments and behavioural observations add 
important context about user experience, strategy, and affective states (Jahedi & Méndez, 2014; 
Muckler & Seven, 1992). By integrating performance data, self-assessment data, and behavioural 
observation data (across both objective and subjective dimensions) evaluators can mitigate the 
limitations inherent in any single data source, such as self-report biases, observer interpretive 
variance, and measurement artifacts, and gain a holistic and nuanced view of human-system 
interaction. 

3.4 Data collection methods 

Having identified the contextual constraints and categories of measurement, the next step is to 
choose suitable methods for retrieving the relevant data. Each method corresponds to different types 
of information, e.g., objective vs. subjective, first-person vs. third-person perspectives, and offer 
distinct strengths and limitations. The selection of methods should balance practical feasibility (as 
discussed in sections 3.1 and 3.3) with the need for validity, repeatability, and interpretability (as 
discussed in section 3.2). 
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Where possible, we recommend a triangulation approach: using multiple methods to measure the 
same construct, or collecting data from different stakeholder perspectives (e.g., end-user, system, 
observer) (Denzin, 2017). This not only increases robustness but also helps reconcile discrepancies 
between subjective experience and observed or recorded behaviour. 

Below, we review key categories of data collection methods and describe how they can be applied in 
the context of HAT evaluation. 

3.4.1 Physiological and biometric measurements 

Psychophysiology attempts to interpret psychological processes through their effect on the body 
state. Among the many advantages of this approach, physiological measures produce continuous and 
objective measurements of the operator state (Lohani et al., 2019). 

On a general note, the ever-evolving technologies have allowed to record more and more easily 
operators’ state in everyday-life-like or ecological settings. The aeronautics domain is not spared by 
this evolution and is actually a lead actor in ecological psychophysiological evaluation of the state of 
operators. The necessity to move from lab tasks to ecological setting is essential, and was already 
mentioned more than 20 years ago. On the one hand, the Hawthorne effect (Mayo 2010) has proven 
to be detrimental as it tends to improve participants’ performances and motivation. On the other 
hand, the various stimulation but also environmental noise and variable experimental conditions tend 
to lower performance, as well as our ability to record exploitable data. Many factors such as task 
difficulty, engagement, perceptual stimulation and attention variation are very different in lab tasks 
compared to real experiments. Nevertheless, the miniaturization of systems and improvement of 
data-processing algorithms has allowed to record psychophysiology data out of the lab. A quick 
search on “real flight psychophysiological measures” in Google Scholar reveals more than 29000 
publications with more than half of them (17300) in the last 10 years. This motivation is not limited to 
MWL evaluation in aeronautics but also to emotion evaluation (Healey et al. 2010), auditory 
perception (Debener et al. 2012), inattentional deafness (Somon et al. 2022), and general cognition 
(see Lohani et al., 2019 for a review) for various applications. Nowadays, physiological markers are 
used as real-time indicators of users’ cognitive and emotional states, such as mental workload, 
situation awareness, arousal, and stress. Common techniques include: 

• Eye-tracking 

Tracks gaze direction, number of fixation and their duration, eye blink rate and blink duration, 
saccades, and pupil diameter. These metrics are useful for assessing visual attention 
distribution, interface usability, and situation awareness (e.g., failure to fixate on critical 
displays), and trust (Hergeth et al., 2016). 

• Electroencephalography (EEG) 

Measures electrical activity in the brain via scalp electrodes. This can be useful for inferring 
cognitive load, fatigue levels, or task engagement or vigilance (Berka et al., 2007). 

• Heart rate and Heart Rate Variability (HRV) 

Captured through elecrocardiography (ECG) or wearable sensors. HRV is often used as a proxy 
for mental effort or stress, where low HRV suggests higher workload or stress. This can be 
useful for comparing baseline to task performance periods (Lohani et al., 2019). 
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• Respiratory activity 

Duration of inspiration (Ti), duration of expiration (Te), total cycle time (Ttot), and tidal 
volume (VT) that represents the volume that is displaced by one breath. Stress and mental 
effort are associated with an increase in respiratory rate and a decrease in respiratory volume 
(NATO 2004) whereas the respiratory volume is generally increased when the demands are 
very high (Harding 1987). 

• Functional Near-InfraRed Spectroscopy (fNIRS) 

Measures the hemodynamic brain activity with optical near-infrared light to estimate the 
cortical variations of oxy- and deoxyhemoglobin (respectively HbO2 and HbR) concentration 
in response to neuronal activity (Izzetoglu et al. 2005). As illustration, studies have 
demonstrated an increase of HbO2 concentration under high MWL conditions, as well as 
increased oxygenation (as computed with the [HbO2]/[HbR] ratio and [HbO2] versus [HbR] 
difference) in the prefrontal cortex (Mandrick et al. 2016). 

• Galvanic Skin Response (GSR) / Electrodermal Activity (EDA) 

Reflects changes in skin conductance due to sweating. This is typically correlated with 
elevated arousal or stress (Boucsein, 2012). 

• Infrared thermography (IRT) 

Detect the distribution of the temperature of a scene through infrared radiations analysis. At 
the human physiological level, IRT is used on facial imagery by assessing the emitted 
electromagnetic radiations reflected by the surface of the skin. Correlated to change in 
emotions (Dzedzickis, Kaklauskas, and Bucinskas 2020; Zenju et al. 2004), alertness 
(Sakamoto et al. 2006), arousal (Diaz-Piedra, Gomez-Milan, and Di Stasi 2019) and mental 
workload (Mizuno, Mito, and Itakura 2020). 

However, physiological measurements come with important limitations. First, they typically require 
specialized equipment and calibration. Second, they may be obtrusive or impractical in operational 
environments. Finally, as mentioned in section 3.3, interpretation can be non-specific, e.g., increased 
arousal could mean stress, engagement, or surprise. Therefore, physiological measurements are 
rarely useful or insightful on their own but benefit from triangulation to contextualize interpretation. 

3.4.2 Behavioural observation and system interaction logging 

This class of methods captures what users do during interaction with a system, typically from an 
external perspective. It includes real-time observation and retrospective analysis of recorded 
behaviour (Kuniavsky, 2003; Rubin et al., 2008). Common methods include: 

• Direct observation (in person or via video stream) 

Human observers document user actions, hesitations, interactions, and behaviours using 
structured coding schemes, free notes, or active participation. This is valuable for 
understanding task strategies, identifying usability issues, and assessing communication in 
team settings (Cooke, 1994; Howitt, 2013; Jordan & Henderson, 1995; Wixon et al., 1990). 
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• Simulation or real-world video review 

Sessions can be reviewed by evaluators or users themselves, enabling debrief and 
retrospective insights and the discovery of latent issues not apparent (or possible to examine) 
in real-time (e.g., Alhadreti & Mayhew, 2018; Mahatody et al., 2010). 

• System and interaction logs 

Automatically capture time-stamped data on task performance (e.g., task duration, error 
rates, system states), use of automation (e.g., frequency, overrides, timing), or response to 
system prompts or failures (e.g., Hilbert & Redmiles, 2000). 

General limitations of these family of methods include the need for trained coders to ensure 
consistency in live and video observation and note-taking. Real-time observation may miss subtle 
behaviours, while video allows replays and cross-checking. System logs provide objective data but 
lack context or reasoning. 

3.4.3 Self-report instruments 

Self-report methods offer a direct way to access the internal, subjective experience of users; what 
they felt, thought, or perceived during or after interaction with the system. While such data are 
inherently introspective and potentially biased, they are essential for assessing constructs what are 
otherwise difficult to observe or measure objectively, such as trust, usability, perceived workload, 
satisfaction, or clarity in system behaviour (Muckler & Seven, 1992; Jahedi & Méndez, 2014). Key 
approaches include: 

• Structured questionnaires 

Structured questionnaires provide a predefined set of items and response options to elicit 
user input. These can be administered immediately after a task, at the end of a session, or 
periodically over time (e.g., in longitudinal evaluations). They are efficient, scalable, and allow 
for quantitative comparison across participants or systems. 

o Standardized tools 

These are validated instruments developed and tested across multiple studies or 
domains. They allow for benchmarking and statistical comparisons, often using fixed 
formats like Likert scales (Cooke, 1994). Examples include the NASA Task Load Index 
(NASA-TLX) (Hart, 2006; Hart & Staveland, 1988) to measure perceived workload 
(over dimensions like mental demand, physical demand, or frustration) and the 
System Usability Scale (SUS) (Lewis, 2018) to provide a quick and general measure of 
perceived usability. It could be unidimensional ratings, hierarchical ratings or 
multidimensional ratings.  

Standardized tools are especially useful in mature projects or comparative 
evaluations, and benefit from established scoring and interpretation guidelines. 
Rating scales are the most practical and generally applicable measures. 

o Custom questionnaires 

When no standard instrument fits the evaluation needs, tailored questionnaires can 
be developed. These are particularly useful for capturing system-specific concerns 
(e.g., perceived helpfulness of a flight assistant), following up on observed issues or 
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themes raised in interviews, or eliciting opinions on new features or changes during 
iterative prototyping. 

Custom instruments should still be designed with care; using clearly worded items, 
balancing phrasing (to avoid acquiescence bias), and appropriate response scales 
(Lietz, 2010; Oppenheim, 2000; Sauro & Lewis, 2011). 

• Free-text feedback and open-ended questions 

These allow users to explain their experience in their own words to highlight contextual or 
emotional nuance (e.g., “it felt like the assistant took control at the wrong time”), emerging 
issues not anticipated by designers, and potential mismatches between system behaviour 
and user expectations. While free-text responses are more difficult to quantify, they are 
valuable in exploratory or early-stage evaluations and can point to areas needing redesign 
(Cooke, 1994). 

• Interviews 

Interviews provide a richer, dialogic approach to understanding user experience. They are 
typically used after simulation runs or system use and can be conducted in person, remotely, 
or during post-session debriefs. 

Structured interviews follow a fixed set of questions and are ideal for formal studies requiring 
comparison across users. Semi-structured interviews begin with a guide of key topics but allow 
flexibility to explore unexpected areas of concern or user insight. Unstructured interviews are 
conversational and exploratory, suitable during formative research or usability testing 
(Cooke, 1994; Howitt, 2013). 

Interviews are especially useful for uncovering mental models, misunderstandings, or value 
judgments users may not express in structured forms. 

• Focus groups 

Focus groups gather multiple stakeholders (e.g., pilots, controllers, instructors) to discuss 
their experiences, concerns, or expectations. These sessions are useful for identifying areas 
of consensus or disagreement, exploring social and organizational dynamics (e.g., training 
acceptance, trust issues), and validating early design directions or evaluation criteria (Howitt, 
2013; Krueger & Casey, 2015). 

Group dynamics can stimulate new ideas, but moderation is important to ensure balanced 
participation and avoid groupthink or dominance effects (Howitt, 2013). 

The use of self-report methods warrants several considerations. For instance, timing the 

administration of self-report instruments is important; immediate post-task responses reduce recall 

bias. Interpretation of self-reported data also benefits from triangulation, where subjective data are 

strengthened when supported by behavioural evidence or expert analysis. Another potential issue is 

fatigue, where over-surveying can impact data quality. Self-report methods should be used sparingly 

or combined with short-form tools where needed. 

Subjective measures have practical advantages (ease of implementation, overall non-intrusiveness) 

and are considered the easiest method for cognitive state measurement. However, several drawbacks 

still remain. The first main criticism of this type of measures is that they are subject to both subjective 

distortion and social desirability bias (Fürstenau & Radüntz, 2022; Radüntz, 2017), leading to possibly 

biased values. Second, they have generally poor temporal resolution. While increasing the sampling 
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rate for operator feedback via the questionnaire could lead to improved temporal resolution, this may 

actually have the negative impact to interrupt the task being performed. In addition, most subjective 

measures tend to suffer from memory lapses as the measure is not made during the event but after. 

Finally, it must be noted that these subjective measures generally have high between-rater variability 

due to their possible emphasizing of personal subjective biases. 

Considerations for all self-report methods overviewed in this section include selecting the appropriate 

timing of administration (e.g., immediately post-task to minimize recall bias), limiting survey fatigue 

through concise instruments, ensuring consistent interpretation of scale anchors across participants, 

and triangulating subjective responses with behavioural or physiological data to improve 

interpretability and robustness. 

3.4.4 Expert and peer-based evaluation 

Expert and peer-based evaluations rely on the informed judgment of individuals with domain 
knowledge, either in human factors, systems engineering, operations, or training. These methods are 
particularly valuable when objective metrics are difficult to define, or when qualitative interpretation 
of performance is needed. They also provide useful input in early-stage design (e.g., identifying 
potential issues) or as part of a validation exercise where external judgment is required (e.g., 
certification, safety case preparation) (Klein et al., 2004; Mahatody et al., 2010; Nielsen & Molich, 
1990). Common approaches include: 

• Heuristic evaluations 

Heuristic evaluation involves expert reviewers systematically inspecting a user interface or 
system workflow against established human factors or usability principles (Nielsen & Molich, 
1990). For example, “Does the system provide clear and timely feedback?”, “Can the user 
understand and control automation behaviour?”, or “Is the interface consistent and 
predictable?”. 

This method is low-cost and rapid, particularly useful during prototyping or for highlighting 
known usability traps (e.g., hidden states, unclear handovers). Common heuristic sets include 
usability heuristics (general interface design) (Nielsen & Molich, 1990), aviation-specific 
checklists (e.g., for cockpit HMI layout), or HAI principles like transparency, observability, 
controllability. 

• Cognitive Walkthroughs and Structured Expert Analyses 

This class of methods involves expert evaluators systematically stepping through specific user 
tasks or scenarios to assess whether a system supports effective and intuitive interaction. 
Unlike heuristic evaluations, which focus on general interface principles, cognitive 
walkthroughs and task analyses emphasize task-specific reasoning by simulating the user’s 
problem-solving process at each step. Experts examine whether users will know what to do, 
whether they can do it, and whether they can interpret the system’s response (Cooke, 1994: 
Mahatody et al., 2010). 

Cognitive walkthroughs are particularly well-suited for early prototypes and for identifying 
issues in learnability, action sequencing, and feedback clarity. They typically require more 
preparation, including defined user goals and action sequences, and benefit from 
multidisciplinary teams familiar with the domain and the user population (Mahatody et al., 
2010). 
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Other structured expert methods, such as GOMS (Goals, Operators, Methods, and Selection 
rules) (John & Kieras, 1996) analysis or pluralistic walkthroughs (Hollingsed & Novick, 2007), 
extend this approach by introducing predictive models of user behaviour or collaborative 
multi-stakeholder evaluations. These methods are resource-intensive but offer rich 
diagnostic value, particularly when empirical user testing is constrained. 

• Instructor or peer assessment 

Often used in training or operational settings (e.g., Evidence-Based Training), instructors or 
peers assess a participant’s performance using defined competency frameworks (e.g., Crew 
Resource Management, workload management, decision making), behavioural markers or 
grading rubrics, or annotated video or live observation tools (see section 3.4.2) (O’Connor et 
al., 2008: Salas et al., 1999). This method is valuable for both formative feedback and 
summative evaluation. In HAT contexts, peer video can also surface concerns about trust, 
clarity of roles, or perceived fairness of automation decisions. 

General considerations for this family of methods include the importance of calibration, since multiple 
raters must agree on criteria and interpretations to avoid inconsistency. Therefore, these methods 
work best when combined with structured observation or system logs for triangulation. Since these 
methods are subject to interpersonal or organizational biases, data anonymization can help ensure 
validity of the results. 

3.5     Selection Criteria and Dimensions of Interest  

In order to select the metrics of interest, we first need to identify the phenomena and states we wish 
to assess. SafeTeam project proposes to draw on existing literature to identify these dimensions of 
interest, particularly regarding the constraints and difficulties generated by the introduction of more 
or less autonomous virtual assistants.  

3.5.1 OOTL associated issues 

When a new automation solution is introduced into a system, or when there is an increase in the 
autonomy of automated systems, developers often assume that adding “automation” is a simple 
substitution of a machine activity for human activity (substitution myth, see Woods & Tinapple, 1999). 
However, the fascination regarding the possibilities afforded by technology often obscures the fact 
that automation also produced new loads and difficulties for the humans responsible for operating, 
troubleshooting, and managing high-consequence systems. Whatever the merits of any automation 
technology are, automation does not merely supplant human activity but also transforms the nature 
of human work.  

Empirical data on the relationship of people and technology suggest that traditional automation has 
many negative performance and safety consequences associated with it stemming from the human 
out-of-the-loop (OOTL) performance problem (see Endsley & Kiris, 1995; Kaber & Endsley, 1997). 
Particularly, automation is frequently accompanied by a decrease in operator performance, such as a 
reduced sensitivity to important signals (Billings, 1991; Wiener, 1988), excessive or insufficient trust 
in system ability (Parasuraman et al., 1993), and loss of operator situation awareness (Carmody & 
Gluckman, 1993; Endsley, 1996; Endsley & Kiris, 1995). As a major consequence, the OOTL 
performance problem leaves operators of automated systems unable to take over manual operations 
in the case of automation failure. Particularly, the OOTL performance problem causes a set of 
difficulties including a longer latency to determine what has failed, to decide if an intervention is 
necessary and to find the adequate course of action (Billings, 1991). 
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Different issues are associated to this OOTL phenomenon: 

• Situation Awareness issue  

The lack of operator involvement in supervisory modes and passive information processing 
contributes to critical human cognitive errors, specifically the loss of operator situation awareness 
(SA), to which many safety incidents have been attributed. Particularly, OOTL phenomenon is 
characterized by both a failure to detect and to understand the problem and by difficulties to find 
appropriate solutions. 

Failure to detect – It is now clear that humans are less aware of changes in the environmental or system 
state when those changes are under the control of another agent (automation or human; Endsley & 
Kiris, 1995; Parasuraman & Riley, 1997; Wickens, 1994; Metzger & Parasuraman, 2001). Several works 
indicate a lack of operator awareness of automation failures and a decrease in detection of critical 
system state changes when involving in automation supervision (for a review see Endsley & Kiris, 
1995), and numerous incidents have been attributed to these difficulties in perception when operating 
in an automated mode.  

Failure to understand - In addition to delays in detecting that a problem has occurred necessitating 
intervention, operators may meet difficulties to develop sufficient understanding of the situation and 
to overcome the problem. “Automation surprises” are a direct instantiation of these difficulties in 
automation understanding and take-over situations (see Sarter, Woods & Billings, 1997). Automation 
surprise is said to occur when the automation behaves in a manner different than its operator expects 
(see Palmer, 1999). When interacting with automated systems, human operators will develop a 
mental model of the system’s behavior and use it to anticipate how the machine will behave in the 
near future. However, with increase in system complexity (for example, the multiplication of the 
number of possible “modes”), it is sometimes difficult for the human operator to track the activities 
of their automated partners. The result can be situations where the operator is surprised by the 
behavior of the automation asking questions like, what is it doing now, why did it do that, or what is 
it going to do next (Wiener, 1989). These “automation surprises” are particularly well documented 
(e.g., Degani & Heymann, 2000; Palmer, 1995; Sarter & Woods, 1994, 1995; Moll van Charante et al., 
1993) and have been listed as one of the major causes of incidents (see for example FAA, 1995).  
  

• Vigilance issue  

When the inclusion of automation appears critical to increase safety and efficiency, such highly 
automated environments will require maintaining high levels of vigilance for a long period of time. 
Interestingly, research on vigilance has shown that humans are poorly suited for monitoring roles 
(Davies & Parasuraman, 1982; Parasuraman, 1987; Wiener, 1987). Indeed, we observe a decrease of 
human operator vigilance in case of interaction with highly automated systems (see for example 
O’Hanlon, 1981; Wiener, 1988; Strauch, 2002). Nowadays, there is some consensus that vigilance 
decrement is one the major index of OOTL phenomenon and insufficient monitoring and checking of 
automated functions is one important behavioral aspect of the OOTL performance problem, (i.e. 
information on the status of the automated functions is sampled less often than necessary) (see for 
example Billings, 1991; Kaber & Endsely, 1997).  

Interestingly, alteration of vigilance process could also generate, or increase, out of the loop situation, 
particularly Mind Wandering (MW) episodes.MW is the human mind’s propensity to generate 
thoughts unrelated to the task at hand (Christoff, 2012; Stawarczyk et al., 2011). Studies point MW as 
a possible cause of many driving accidents (Galera et al., 2012), plane crashes (Casner and Schooler, 
2013) and medical errors (van Charante et al., 1993). Recently, a link between automation and MW 
has been proposed (Casner & Schooler, 2014; Gouraud, Delorme, & Berberian, 2018). Recently, a link 
between automation and MW has been proposed. Casner and Schooler (2014) conducted a study 
where pilots were instructed to handle the approach – flight phase before landing – in a simulator by 
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following beacons at altitudes given by the ATCo. Probes inquired about their state of mind at 
predetermined times while pilots had to report their position to the ATCo. They reported that when 
using higher levels of automation, pilots were more prone to MW when they had no interaction with 
the system and when the previous call had been made. Time saved by automation, which should 
normally be used to plan the flight, was instead fulfilled by task-unrelated thoughts. 
 

• Complacency / Trust issue  

Complacency defines the cognitive orientation toward high reliability automation, particularly prior 
to the first time it has failed in the user’s experience (Rovira, McGarry & Parasuraman, 2007). 
Complacency is perceived as a strategy to optimize performances operators working with systems 
that fail once every ten million hours of use tend to underestimate the possibility of automation errors 
and over-trust the system (Parasuraman & Wickens, 2008). Because they have the feeling that the 
system does not require them to work efficiently, they instinctively lower cognitive resources 
allocated to monitoring (Morrison, Cohen, & Gluckman, 1993). This overreliance on automation 
represents an important aspect of misuse that can result from several form of human error, including 
decision biases and failure of monitoring (Wiener, 1988; Parasuraman, Molloy, & Singh, 1993; 
Parasuraman & Riley, 1997; Singh, Molloy, & Parasuraman, 1993).  

This phenomenon is directly linked to the concept of trust. The concept of trust in automation 
describes to what extent an operator relies on an automatic control system. The role of trust in 
human-automation interaction has been the focus of much research over the past decade (e.g., 
Dzindolet, Peterson, Pomranky, Pierce, & Beck, 2003; Madhavan & Wiegmann, 2007; for a 
comprehensive review, see Lee & See, 2004). It has been proved that high levels of trust in automation 
that is not perfectly reliable lead to overreliance and failure to monitor the “raw” information sources 
providing input to automation – so-called complacency. Conversely, if automation is underestimated 
it may limit its use, restricting its benefits (Lee & See, 2004). In certain conditions, system opacity 
appears to limit the trust in automation and generate such disuse.  

3.5.2  Beyond the OOTL phenomenon  

This is a new relation between the human and the machine, as an automatic machine may be said to 
be intelligent. The new form of interaction differs dramatically from the traditional interaction of the 
human with the tools and devices that possess no intelligence, in which all sensing and control were 
done by the human operator. Adding or expanding the machine’s role changes the cooperative 
architecture, changing the human’s role, often in profound ways (Sarter, Woods, & Billings, 1997). The 
introduction of automation into complex systems has led to a redistribution of operational control 
between human operators and computerized automated systems. Moreover, as pointed out by 
Flemisch et al. (2012), in addition to control, authority, ability and responsibility are also modified 
according to the level of automation within the human–machine system. 
 

• Sense of control and acceptability issue  

Often neglected, the psychosocial aspects of automation may prove to be the most important of all, 
because they influence the basic attitudes of the operator toward his task, and we would presume, his 
motivation, adaptability, and responsiveness. The significance of these questions lies not in the 
spectra of massive unemployment due to assembly line automation, but in the effects of automation 
on the changing role of human operators. 

Improving acceptance of new technology and systems by human operators is an important area of 
concern to equipment suppliers (see Horberry, Stevens, & Regan, 2014). To be acceptable, new 
technology must be reliable, efficient and useful. Although performance and preference are often 
positively correlated (Nielsen & Levy 1994), high levels of performance do not guarantee user 
acceptability. Further, it appears that users indeed tend to reject systems that enhance their 
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performance in favor of systems that are less efficient but more acceptable. For instance, Inagaki et 
al. (2007) showed that drivers preferred collision warnings than automated control, which tends to be 
misunderstood; even when automated control provided led to better performances. As pointed out 
by Shneiderman and Plaisant, (2004), users “strongly desire the sense that they are in charge of the 
system and that the system responds to their actions”. Increase in automation has the potential to 
seriously threaten this sense of control.  

Recently, the concept of agency has been applied to the HCI domain (McEneaney, 2013; Berberian et 
al., 2012; 2013; Obhi & Hall, 2011; Limerick, Coyle & Moore, 2014). The term ‘sense of agency’, or sense 
of control, is the subjective awareness of initiating, executing, and controlling one's own volitional 
actions in the world (Jeannerod, 2003). This form of self-awareness is important not only for motor 
control but also for social interactions, the ascription of causal responsibility and serves as a key 
motivational force for human behaviour. Unfortunately, it has been repeatedly shown that the 
progress in automation technology can alter the development of this sense of agency (Berberian, 
2019). What makes our understanding of agency especially relevant is the fact that a decrease in 
agency could generate critical concern regarding both automation acceptability and operator 
behavior. As pointed out by Baron (1988), “the major human factors concern of pilots in regard to 
introduction of automation is that, in some circumstances, operations with such aids may leave the 
critical question, who is in control now, the human or the machine?”. This ambiguity about who is in 
control could impact user acceptance, but also user engagement in the task.  
 

• Coordination issue 

This new form of interaction also introduces new coordination demands and the emergence of new 
classes of issues due to failures in the human-machine relationship. Automated tools are increasingly 
being modelled as ‘partners’ rather than as tools (Klein et al. 2004). These partners should support or 
assist the human in performing functions that may either be difficult or even impossible for the 
operator to perform without the assistance of a ‘knowledgeable team-mate’. This entails new 
coordination demands for the operator – they must ensure that their own actions and those of the 
automated agent are synchronized and consistent. Designing to support this type of coordination is 
a post-condition of more capable, more autonomous automated systems. Critically, it appears 
necessary to design a system able to give feedback about its state and the course of its action to 
support cooperation. Unfortunately, as previously discussed with the concept of “Automation 
Surprise”, such cooperation is difficult to obtain. The result can be automation which leaves its human 
partners perplexed, asking Wiener’s (1989) now familiar questions: what is it doing? Why is it doing 
that? What is it going to do next? 

These new coordination demands generate the emergence of new classes of issues due to failures in 
the human-machine coordination. Amongst others, system opacity appears as a first concern. one of 
the foundations of any type of cooperative work is a shared representation of the problem situation 
(e.g. Grosz, 1981; McCarthy et al., 1991). In human-human cooperative work, a common finding is 
that people continually work to build and maintain a “common ground” of understanding to support 
coordination of their problem-solving efforts (e.g. Patterson et al., 1999). We can break the concept 
of a shared representation into two basic (although interdependent) parts: (1) a shared representation 
of the problem state, and (2) representations of the activities of other agents. The first part, shared 
representation of the problem situation, means that the agents need to maintain a common 
understanding of the nature of the problem to be solved. The second part, shared representation of 
other agents’ activities, involves access to information about what other agents are working on, which 
solution strategies they are pursuing, why they chose a particular strategy, the status of their efforts 
(e.g. are they having difficulties? Why? How long will they be occupied?), and their intentions about 
what to do next. When we consider automated team members, this information no longer comes for 
free – we have to actively design representations to generate the shared understandings which are 
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needed to support cooperative work. Nowadays, this work for “OPENING UP THE BLACK BOX” 
remains unsatisfactory. 

In this context, the main problem with automation is not the presence of automation, but rather its 
inappropriate design (Norman, 1990). Where designers really need guidance today is how to support 
the coordination between people and automation, not only in foreseeable standard situations, but 
also during novel, unexpected circumstances. Understanding the actions of the automated system is 
central for human operators.  However, as previously discussed with the concept of “Automation 
Surprise”, such understanding is difficult to obtain. The lack of system predictability is certainly a 
central point in understanding OOTL phenomenon and associated difficulties of takeover 
(Christoffersen & Woods, 2000; Dekker & Woods, 2002; Klein, Woods, Bradshaw, Hoffman, & 
Feltovich, 2004; Norman, 1990). With the progress of technology, current man-made complex 
systems tend to develop cascades and runaway chains of automatic reactions that decrease, or even 
eliminate predictability and cause outsized and unpredicted events (Taleb, 2012). This is what we may 
call “system opacity”: the difficulty for a human operator to have a clear idea of the system’s 
intentions and to predict the sequence of events that will occur. In that sense, the main problem with 
automation is not the automation per se, but rather its inappropriate design within the human-
computer interaction (Norman, 1990). For example, previous studies have showed that ATCo 
performance can be compromised when ATCos do not have ready access to aircraft intent 
information (Castaño & Parasuraman, 1999; Galster, Duley, Masalonis, & Parasuraman, 2001). This 
situation is likely to generate difficulties in anticipating/understanding the actions of my artificial 
partner, thereby generating difficulties in terms of coordination, acceptability and feeling of control. 
In this sense, the intelligibility of artificial systems (i.e., producing clear, predictable and 
understandable behavior) is a major challenge for the systems engineering community. 

3.5.3 Selected dimensions 

Considering the different issues revealed, we have decided to select a set of measures that make 
available:  

• The quality of cooperation, in particular team performance, Cooperativeness / Coordination, 
Fluency, Shared Situation Awareness,  

• The attitude toward the artificial partner, in particular, Trust, Usability, Acceptability, 
Controllability, 

• The state of the operator regarding OOTL phenomenon, in particular Vigilance/Mind 
Wandering, Feeling of Agency, Situation Awareness, Complacency. 
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In addition to the relevance for the dimensions of interest, we have considered ease of use as a central 

element in our selection of metrics, as the methodology must be accessible to people who are not 

experts in HF. 
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4 Selected metrics 

Based on an extensive literature review relating to studies about human-machine collaboration in 

operations (see Appendix A) and regarding the dimensions of interest previously identified, we have 

selected a set of metrics allowing to assess: Human-Machine Collaboration (HMC), Attitude towards 

the artificial partner (Attitude), and the Operator State (State). For each metric, various 

characteristics are provided: 

• The name and definition of the metric; 

• The dimension addressed by this metric: either HMC, Attitude or State; 

• The type of metric as described in Section 3: either self-report, behavioural or physiological, 

but also either subjective or objective; 

• The expertise required to administer this metric: on three levels namely novice, intermediate 

or expert; 

• The time required to administer and compute this metric: on three levels namely low, 

medium, or high; 

• The material necessary to administer this metric; 

• The moment when it should be administered: either before the task, during the task, after 

each trial, or after the task; 

• Commentaries and limitations regarding this metric. 

4.1 Team performance 

General domain addressed: Team Performance 

Team performance is in this case specifically related to taskwork, meaning how the human-
artificial agent team performs at completing the assigned tasks. 

 Name: Response Time 
Response Time (RT) is the “time duration between the presentation of stimulus to a human 
and the human’s response”. 

Dimension 
addressed: 

State 
Attitude 

Type of metric: 

Behavioral 
Objective 

Expertise required: 
Novice 

Time 
requirements: 

Low 

Material 
necessary: 

Time-accurate 
response 
recording 
system. 

Commentary/limitations: 

It requires a specific action from the operator, associated to an event. 
It can be interpreted only in time-pressured evaluations. 
It can be computed at the trial level or averaged separately for 
experimental conditions to be compared.   

 

 

 

When: 
After each trial 
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 Name: Total task time 
Total Task Time (TTT) refers to the total elapsed time between the beginning of a task (a 
specific work, a trial, etc.) and its end. It includes all activities (breaks, interruptions, etc.) 
within that time frame. It has to be dissociated from the time on Task (ToT) which refers to 
the active part of the TTT.  

Dimension 
addressed: 

HMC 
Attitude 

Type of metric: 
Behavioral 
Objective 

Expertise required: 
Novice 

Time 
requirements: 

Low 

Material 
necessary: 

Timer 

Commentary/limitations: 

It requires to define what the “task” is. It needs start and stop elements 
which are associated to a specific meaning and requirement. 

When: 

After the task 

 Name: Accuracy [Hit/Error rate] 
The accuracy is defined in signal detection tasks as “the proportion of trials in which a signal is 
present and the participant correctly responds that it is.” It is defined in %.  
The hit rate [error rate] is computed as the ratio between the number of correctly identified 
[missed] events over the total number of presented events * 100 

Dimension 
addressed: 

State 

Type of metric: 

Behavioral 
Objective 

Expertise required: 
Novice 

Time 
requirements: 

Low 

Material 
necessary: 

None 

Commentary/limitations: 

This measure refers to a wide number of concepts and has low specificity 
towards them. The conclusions drawn from it can be limited. It can be 
computed to compare experimental conditions. It also requires the 
dichotomic identification of a correct and incorrect answer. When 
combined with other measures in the signal detection theory framework it 
allows to compute additional metrics such as the sensitivity (d’) or bias (c) 
towards a specific response.  

When: 

After the task 

 Name: Task Completion Rate 
Task completion rate corresponds to the ratio between the number of completed trials and 
the total number of trials * 100. 

Dimension 
addressed: 

Attitude 

Type of metric: 

Behavioral 
Objective 

Expertise required: 
Novice 

Time 
requirements: 

Low 

Material 
necessary: 

Commentary/limitations: 



   

 

Page I 26 
 

  

 

None This measure refers to a wide number of concepts and has low specificity 
towards them. The conclusions drawn from it can be limited. 
The task completion rate also requires defining thresholds satisfactory for 
success and failure according to the task and context.  

When: 
After the task 

4.2 Mental Models 

 

General domain addressed: Mental Models 

The term “Mental models” refers to an individual’s internal representation or understanding of 
how something works or how different elements relate to each other within a system. It’s a 
cognitive framework that people construct to help them interpret and interact with the world 
around them.  

 Name: Automation Awareness 
Automation awareness refers to the quality of the representation that an individual has of its 
artificial partner mental model. It is measured after each trial using six statements, each 
rated with a 5-point Likert scale of strongly agree to strongly disagree. 

Dimension 
addressed: 
State 

Type of metric: 

Self-report 
Subjective 

Expertise required: 

Novice 

Time 
requirements: 
Medium 

Material 
necessary: 
Paper/pencil 

Commentary/limitations: 
An average value of automation awareness can be obtained by averaging 
the values of all items.  

Questions need to be adapted regarding the action performed by the 
Artificial Agent (AA) in each use case. 

When: 
After each trial 

 Name: Mental model Formal Framework 
This metric’s objective is to define a framework to detain a set of questions relevant to a 
specific system, supported by 3 definitions regarding: subject overlap, compatibility, and 
agreement.  

 

 

Dimension 
addressed: 
State 

Type of metric: 
Self-report 
Subjective 

Expertise required: 

Expert 

Time 
requirements: 
High 
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Material 
necessary: 
Paper/pencil 

Commentary/limitations: 
This doesn’t directly define the questions to be proposed to participants, 
it requires to adapt this set of questions to the situation and tasks. It is 
thus highly adaptable to various scenarios. 

 The framework also allows to define Shared Mental Models (SMM) in a 
specific situation. Still, a complete questionnaire cannot be proposed, but 
a methodology to detain a suiting set of questions. The model is a mental 
model in the mind of an agent, sharedness is defined with respect to a 
relevant set of questions. 

When: 
After each task 

 Name: Situation Awareness General Assessment Technique 

The SAGAT is addressed during full simulations where the experimenter freezes the 
environment and probes the participant either orally, via pencil/paper or on a tablet 
to4valuate their current perception of the situation before the simulation resumes. Queries 
concern either the environment or the system state and relate to Level 1 (perception), 2 
(comprehension) or 3 (projection) of the SA model. 

Dimension 
addressed: 
State 

Type of metric: 

Probing 
Subjective 

Expertise required: 
Expert 

Time 
requirements: 
High 

Material 
necessary: 
Simulation 
environment, 
Paper/pencil or 
tablet 

Commentary/limitations: 

This evaluation requires subject matter experts to identify relevant 

elements in the environment or the system state. Scoring needs to be 

addressed regarding a specific time-point and situation.  Scoring some 

queries may be provided by subject matter experts with perfect 

knowledge of the situation at the time of the freeze. SAGAT scores are 

normally expressed as percent correct for each query, based on 

operationally relevant tolerance bands. Many researchers have varied 

from this recommended approach, instead combining the scores on all 

SAGAT queries into a combined overall score, or into three combined 

scores that represent Level 1, 2, and 3 SA. This evaluation requires a 

highly controllable simulation. 

When: 
After each task 

 Name: Task reflection 
For this retrospection task, participants describing their reasoning after conducting the task 
by i) replaying the events, ii) identifying decision points and reflecting on them; and iii) self-
explaining their own understanding of the task.  

Dimension 
addressed: 
State 

Type of metric: 

Self-report 
Subjective 

Expertise required: 
Expert 

Time 
requirements: 
High 

Material 
necessary: 
Camera 
recording of 
situation or 
simulation 

Commentary/limitations: 
An empirically derived expression of the content or the ebbs and flows 
that compose a user's mental model must contribute to the evaluation of 
mental model goodness (i.e., correctness, comprehensiveness, 
coherence, and usefulness). This evaluation needs to be performed in 
complementarity with other situation awareness and mental model 
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environment, 
audio recording 
system 

evaluation tasks. This evaluation requires subject matter experts to be 
able to address the precise events and issues related to the task 
performed by the participant. It is also time consuming and requires a 
highly controllable simulation.  

When: 
After each task 

4.3 Trust 

General domain addressed: Trust 

Trust has been associated to many definitions and models according to the domain of 

application. Trust influence how willing a user is to rely on a machine agent, system, or 

automation to perform a task, based on the user’s perception of the machine’s ability, integrity, 

and predictability. Judgement to which the user can rely on the automated system to achieve his 

or her goals under conditions of uncertainty. 

 Name: Human Computer Trust Questionnaire 
This questionnaire consists of 5 constructs (perceived reliability, perceived technical 
competence, perceived understandability, faith, and personal attachment) with 5 
corresponding items. The participants answer on a Likert scale providing their level of 
agreement with each item. 

Dimension 
addressed: 

Attitude 

Type of metric: 

Self-report 
Subjective 

Expertise required: 

Intermediate 

Time 
requirements: 

Medium 

Material 

necessary: 

Paper/pencil 

Commentary/limitations: 
The average of the 25 items represents overall trust. 
It can be computed for experimental conditions separately to compare 
them.  
Quite long to administrate regarding other trust questionnaire.  When: 

After each task 

 Name: Trust scale 

This scale is based on 6 items for which participants have to provide their agreement on a 5-

point Likert scale going from 1. strongly disagree to 5. strongly agree. It evaluates, regarding 

a specific situation the current trust state.  

Dimension 
addressed: 
Attitude 

Type of metric: 

Self-report 
Subjective 

Expertise required: 

Novice 

Time 
requirements: 
Low 

Material 

necessary: 

Paper/pencil 

Commentary/limitations: 
This scale is very easy and quick to implement. It can be used to compare 
various versions of a similar agent. There are several modified versions of 
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When: 
After each task 

this scale with, for example, 4 items for collaborative Human-Human-
Agent triads questioning both Trust in the agent and Trust in the 
teammate. 
It can be computed for experimental conditions separately to compare 
them. 

 Name: Propensity to trust machine scale 
This scale is based on 6 items for which participants have to provide their agreement on a 5-
point Likert scale going from 1. strongly disagree to 5. strongly agree. It provides a general 
evaluation of trust as a trait for each participant.  

Dimension 
addressed: 
Attitude 

Type of metric: 

Self-report 
Subjective 

Expertise required: 

Novice 

Time 
requirements: 
Low 

Material 

necessary: 

Paper/pencil 

Commentary/limitations: 
This scale allows to consider inter-participants variations. Propensity to 
trust and trust (see trust scale) are two separated, but related, constructs. 

When: 
Before the task 

 Name: Dynamic reporting of trust 
This measure corresponds to one simple question allowing to evaluate trust towards the 
artificial agent on a 0 (I don’t trust the artificial agent at all) to 100 (I trust the artificial agent 
completely) scale. It allows to measure trust either after a trial or as probing (dynamic).  

Dimension 
addressed: 
Attitude 

Type of metric: 

Self-report 
Subjective 

Expertise required: 

Novice 

Time 
requirements: 
Low 

Material 

necessary: 

None 

Commentary/limitations: 
This measure has been used as quick and frequent (even continuous) 
measure. If performed frequently, it requires an interruption of the task 
even if it is quick and minimal. It near real-time measure possibility allows 
to be used for the consideration of the temporal specificity and evolution 
of trust. 

It can be averaged for experimental conditions separately to compare 
them, or interpreted over time.  

When: 
After each trial 
or during the 
task 

 Name: XAI trust scale 
The XAI Trust Scale asks users directly whether they are confident in the XAI system, 
whether the XAI system is predictable, reliable, efficient, and believable. It is an 8 items list 
to which participants are asked to respond on a 5-point Likert scale form “I agree strongly” to 
“I disagree strongly”.  

Dimension 
addressed: 
Attitude 

Type of metric: 
Self-report 
Subjective 

Expertise required: 
Novice 

Time 
requirements: 
Low 
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Material 

necessary: 

Paper/pencil 

Commentary/limitations: 
This scale is focused specifically on the end-user's trust in machine-
generated explanations. The scale is initially oriented towards tools but 
can be adapted to the evaluation of artificial agents. 
It can be computed for experimental conditions separately to compare 
systems or conditions. 

When: 
After each task 

 Name: Acceptation-Compliance / rejection rate of artificial agent’s suggestion 
This measure is computed as the percentage of the artificial agent’s suggestion accepted or 
rejected. The compliance and agreement rate corresponds to the number of times the 
participant follows recommendations given by the system or positively responds to system 
alarms. They can be computed over a few trials, or a whole task. 

Dimension 
addressed: 
Attitude 

Type of metric: 

Behavioral 

Objective 

Expertise required: 
Novice 

Time 
requirements: 
Low 

Material 

necessary: 

None 

Commentary/limitations: 
This scale can be used to assess performance as well as trust. The valence 
of each recommendation in terms of rejection/acceptance needs to be 
evaluated carefully. This measure could affect other trust metrics due to 
lowered trust associated with wrong recommendations detection. 
Additionally, this measure is very sensitive to other variables such as 
workload or emotions.  

When: 
After each trial 
or after the task 

 Name: Intervention/Task delegation 
This measure refers to the number of times the human agent intervenes [or oppositely 
chooses to delegate] in the artificial agent’s task. In opposition with “reliance”.  

Dimension 
addressed: 
Attitude 

Type of metric: 
Behavioral 
Objective 

Expertise required: 
Novice 

Time 
requirements: 
Low 

Material 

necessary: 

None 

Commentary/limitations: 

This measure can be used to assess performance as well as trust. 

Additionally, this measure is very sensitive to other variables such as 

workload or emotions. 
When: 
After the task 

 Name: Ocular metrics 
Ocular metrics can be divided into two main types of measures: gaze-tracking measures and 
pupillometry. Both can be the physiological expression of monitoring behaviour towards the 
system. Specific measures such as monitoring frequency (glances), fixation frequency or 
fixation duration have been associated to trust. 

Dimension 
addressed: 
Attitude 

Type of metric: 

Physiological 

Objective 

Expertise required: 
Expert 

Time 
requirements: 
High 
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Material 

necessary: 

Eye-tracker 

Commentary/limitations: 

Eye tracking measures have low specificity and must be measured in 

association with subjective and/or behavioural measures. Their quality 

and precision also have an inverse relationship with the intrusiveness of 

the eye tracking hardware. Additionally, eye-tracking measures are very 

sensitive to the luminosity of the environment, which should be stable to 

perform comparisons.  

When: 
During the task 

 Name: Decision/Verification time 
Decision time refers to the time to make a decision, generally complying to a 
recommendation. Verification time refers to the act of confirming the accuracy of a 
teammate's actions or recommendations and may precede compliance, reliance, or 
intervention. They can both be associated to trust.  

Dimension 
addressed: 
Attitude 

Type of metric: 
Behavioral 
Objective 

Expertise required: 
Intermediate 

Time 
requirements: 
Medium 

Material 

necessary: 

Timer 

Commentary/limitations: 

This measure is sensitive to extraneous variable (i.e., workload and risk 

level) that may not capture trust. It can also be biased give the balance 

with the cost of said verification for the participant.  
When: 
After each trial 

 

4.4 Fluency 

General domain addressed: Fluency 

Fluency in joint action is the quality existent when two agents perform together at high level of 

coordination and adaptation, in particular when they practice a task repetitively, and are well 

accustomed to the task and to each other. In simulation, anticipation has been shown to lead to 

improved task efficiency and fluency, as well as a perceived commitment of a simulated robot to 

the team and its contribution to the team’s fluency and success. 

 Name: Extended version of the fluency in Human-Robot interaction scale 
This scale aims to shed light on different aspects of human-robot interaction to characterize 
high-quality cooperation between the human and the robotic counterpart. This 
psychometrically-validated measurement tool allows for repeated testing and improving the 
understanding of HRI fluency and its perspectives. 

Dimension 
addressed: 
HMC 

Type of metric: 

Self-report 

Subjective 

Expertise required: 
Intermediate 

Time 
requirements: 
Medium 

Material 

necessary: 

Paper/pencil 

Commentary/limitations: 

This scale can be provided in its extended, or adjusted version. The 

extended version allows to address several sub-dimensions of fluency 



   

 

Page I 32 
 

  

 

When: 
After the task 

through trust, learning, shared goals, etc. These sub-dimensions can also 

be assessed individually. This scale can be adapted to wider autonomous 

agents (not only robots) but some items must be modified.  

 

4.5 Agency/Controllability 

General domain addressed: Agency/controllability 

Controllability refers to “how much a user is “in control” of the process. Controllability reflects to 
what extent they can control the automation or alter its result to reach their goal, and how easily 
and rapidly can this control be carried out.” Agency refers to the “experience of controlling one’s 
own actions, and, through them, events in the outside world”. 

 Name: Result controllability 
Result controllability is measured as a 7-item scale to which participant must provide their 
agreement on a 7-point Likert scale from “1. Strongly disagree” to “7. Strongly agree”. The 
items address different sub-dimensions of controllability, namely: perceived accuracy, 
perceived controllability, feeling of control, feeling of accomplishment, feeling of 
responsibility, satisfaction and enjoyment. 

Dimension 
addressed: 
Attitude 

Type of metric: 

Self-report 

Subjective 

Expertise required: 
Novice 

Time 
requirements: 
Low 

Material 

necessary: 

Paper/pencil 

Commentary/limitations: 

This scale is focused primarily on the result and the outcomes. Moreover, 

it is mostly relevant when considering an artificial agent as a tool rather 

than a partner. Additionally, this scale can be redundant with usability, 

acceptability and agent’s performance. 

The results have to be considered individually for each item. They can be 

computed for experimental conditions separately to compare systems or 

conditions. 

When: 
After each task 

 Name: Autonomous Agent Teammate-Likeness Scale - Perceived agentic capability of 
the system 
The perceived agentic capability scale refers to one of the 6 sub-dimensions of the 
Autonomous Agent Teammate-Likeness Scale. It is the perception that the intelligent agent 
as an autonomous agent, has some degree of decision-making latitude and an affordance, 
ability, and authority for self-control. It is measured as a 7-item scale to which participants 
provide their agreement on a 5-point Likert scale from “1. Strongly disagree” to “5. Strongly 
agree”. 

Dimension 
addressed: 
State 

Type of metric: 

Self-report 

Subjective 

Expertise required: 
Novice 

Time 
requirements: 
Low 
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Material 

necessary: 

Paper/pencil 

Commentary/limitations: 

 At the opposite of result controllability scale, it is mostly relevant when 

considering an artificial agent as a partner rather than a tool. It requires to 

interact with artificial agent with high level of autonomy.  
When: 
After the task or 
after each trial 

 Name: We-agency scale 
This measure corresponds to one simple question allowing to evaluate to which teammate 
(him or the artificial partner) the agent attributes the control over an outcome on a scale 
from 1 (definitely the artificial partner) to 9 (definitely me). It allows to measure agency 
either after a trial or as probing (dynamic). The question is: “Who produced the outcome of 
the joint action?” 

Dimension 
addressed: 
State 

Type of metric: 

Self-report 

Subjective 

Expertise required: 
Novice 

Time 
requirements: 
Low 
 

Material 

necessary: 

Paper/pencil 

Commentary/limitations: 

The experimenter needs to ensure and be mindful about the use of the 

term responsible for, especially for populations who are required to be in 

constant control. The prompt can be adapted if necessary.  

Additionally it requires to consider a specific joint action and cannot be 

measured during system monitoring tasks.  

When: 
After each trial 

 

4.6 Communication and coordination 

General domain addressed: Communication and coordination 

Communication concerns the transmission of information, which may be by verbal (oral or 
written) or nonverbal means. Humans communicate to relate and exchange ideas, knowledge, 
feelings, and experiences and for many other interpersonal and social purposes.  In the 
framework of human-system interaction, communication can be regarded as the process of at 
least two entities “sharing” something, suggesting an act of “bringing together”.  
Coordination refers to the capacity of various parts to function together. In human-system 
interaction, it refers to the process of aligning the actions and interactions between humans and 
machines to achieve common goals effectively.  The key aspects of human-machine 
coordination include turn-taking, communication, and the management of dependencies 
between activities. 

 Name: Human-Autonomy Teaming assessment scale 
This measure assesses to which extent the artificial agent supports four teaming skills 
namely: communication, coordination, cooperation and cognition. It is an 8-item scale to 
which participants have to provide their agreement on a 5-point Likert scale from “5. 
Strongly agree” to “1. Strongly disagree”. 
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Dimension 
addressed: 
HMC 

Type of metric: 

Self-report 

Subjective 

Expertise required: 
Novice 

Time 
requirements: 
Medium 

Material 

necessary: 

Paper/pencil 

Commentary/limitations: 

This measure can be redundant with controllability and usability scales.  

When: 
After each task 

 Name: Autonomous Agent Teammate-Likeness Scale - Richness of communication 

The richness of communication scale refers to one of the 6 sub-dimensions of the 

Autonomous Agent Teammate-Likeness Scale. It is the perception that the intelligent agent 

communicates in a way that is relatively complex, sophisticated, clear, highly informative, 

and interactive. It is measured as a 6-item scale to which participants provide their 

agreement on a 5-point Likert scale from “Strongly disagree” to “Strongly agree”. 

Dimension 
addressed: 
HMC 

Type of metric: 

Self-report 

Subjective 

Expertise required: 
Novice 

Time 
requirements: 
Low 

Material 

necessary: 

Paper/pencil 

Commentary/limitations: 

Particularly relevant for consideration about the design of human system 

interaction. Could be both used when considering the artificial agent as a 

partner or a tool.    
When: 
After each task 

 Name: Autonomous Agent Teammate-Likeness Scale - Synchronized mental model  

The synchronized mental model scale refers to one of the 6 sub-dimensions of the 

Autonomous Agent Teammate-Likeness Scale. It is the perception that the intelligent agent 

behaves in a predictable manner and responds as expected such that respective actions and 

reactions are synchronized, seamless, and natural. It is measured as a 5-item scale to which 

participants provide their agreement on a 5-point Likert scale from “1. Strongly disagree” to 

“5. Strongly agree”. 

Dimension 
addressed: 
HMC  

Type of metric: 

Self-report 

Subjective 

Expertise required: 
Novice 

Time 
requirements: 
Low 

Material 

necessary: 

Paper/pencil 

Commentary/limitations: 

This measure can be redundant with mental model questionnaires and 

assessments. It is highly relevant when performing joint task with 

artificial partner but remains interesting for supervisory task.  
When: 
After each task 
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4.7 Explanation satisfaction 

General domain addressed: Explanation satisfaction 

Satisfaction is a contextualized, a posteriori judgment of explanations. It is measured according 
to key attributes, such as understandability, feeling of satisfaction, sufficiency of detail, 
completeness, usefulness, accuracy or trustworthiness. 

 

 

 Name: Explanation Satisfaction Scale 

It is measured as a 7-item scale to which participants provide their agreement on a 5-point 

Likert scale from “Strongly disagree” to “Strongly agree”. 

Dimension 
addressed: 
HMC 

Type of metric: 

Self-report 

Subjective 

Expertise required: 
Novice 

Time 
requirements: 
Low 

Material 

necessary: 

Paper/pencil 

Commentary/limitations: 

This measure can be redundant with trust and communication scales. 

When: 
After each trial 

 Name: System Causability Scale (SCS) 
SCS is measured as a 10-item scale to which participants provide their agreement on a 5-
point Likert scale from “1. Strongly disagree” to “5. Strongly agree”. It measures the quality 
of the explanations provided by the system, their timing and their granularity.  

Dimension 
addressed: 
HMC 

Type of metric: 

Self-report 

Subjective 

Expertise required: 
Novice 

Time 
requirements: 
Low 

Material 

necessary: 

Paper/pencil 

Commentary/limitations: 

An overall value is computed as the sum of the 10 items divided by 50. 

This measure can be redundant with shared mental models, 

controllability and acceptability scales. The result can be computed for 

experimental conditions separately to compare systems or conditions. When: 
After the task 
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4.8 Vigilance, Attention allocation 

General domain addressed: Vigilance, Attention allocation 

Attention refers to a state in which cognitive resources are focused on certain aspects of the 

environment rather than on others and the central nervous system is in a state of readiness to 

respond to stimuli. Research in this field has been devoted to discerning which factors influence 

attention and to identify the underlying neural mechanisms. Past experience or conscious 

perception, as well as qualities of stimuli in the environment, such as intensity, movement, 

repetition, contrast, and novelty can impact attention. On the other hand, vigilance refers to a 

state of extreme awareness and watchfulness directed by a person toward the environment, 

often toward potential threats. In various contexts, vigilance tasks demand maximum 

physiological and psychological attention and readiness to react, characterized by an ability to 

attend and respond to stimulus changes for uninterrupted periods of time.  

 

  
Name: Ocular metrics – Time on tool 
Ocular metrics can be divided into two main types of measures: gaze-tracking measures and 
pupillometry. Both can be the physiological expression of monitoring behaviour towards the 
system. The raw eye movement is captured by the eye-tracking device with areas of interest 
defined beforehand. Here, the analysis of raw eye movements or scan-paths focuses on 
fixations (maintaining visual gaze within a specific area of the screen or regions of interest) 
and saccades (rapid eye movements between fixations). Fixations are defined as relatively 
stable positions of the eye, for at least 100ms, allowing information encoding. This requires a 
classification algorithm to identify fixations (and implicitly the saccades between them) from 
the raw scan-paths. A longer fixation time could be interpreted as a marker of the complexity 
or the importance of a piece of information. 

Dimension 
addressed: 
State 

Type of metric: 

Physiological 

Objective 

Expertise required: 
Intermediate 

Time 
requirements: 
High 

Material 

necessary: 

Eye-tracking 

system 

Commentary/limitations: 

The specificity of ocular metrics can be very limited and requires other 

measures (performance, subjective) to be associated with. It is very 

sensitive to the environment and various task parameters. Analysis could 

be highly time consuming. 
When: 
During or after 
the task 
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4.9 Workload and cognitive load 

General domain addressed: Workload and cognitive load 

The notion of workload is related to the cost for an operator to achieve a task in a given 
environment. Workload can be defined as the effort invested by the human operator into task 
performance; workload arises from the interaction between a particular task and the performer. 
Workload refers to a hypothetical construct that represents the cost incurred by a human 
operator to achieve a particular level of performance. Cognitive load, on the other hand refers to 
the effort being used in the working memory. 

 Name: Instantaneous Self-Assessment of workload (ISA) 
ISA involves participants self­­rating their workload as a function of spare mental capacity 
during a task (normally every two to five minutes) on a scale of 1 (low) to 5 (high). The 
frequency and timing of the workload ratings should be determined beforehand by the 
analyst. It is crucial that the provision of a workload rating is as unintrusive to the 
participant’s primary task performance as possible. 

Dimension 
addressed: 
State 

Type of metric: 

Self-report 

Subjective 

Expertise required: 
Novice 

Time 
requirements: 
Low 

Material 

necessary: 

Paper/pencil 

Commentary/limitations: 

In order for the results to be valid, the participants should have the same 

understanding of each level of the workload scale i.e. what level of 

perceived workload constitutes a rating of 5 on the ISA workload scale 

and what level constitutes a rating of 1. ISA is a very simplistic technique, 

offering only a limited assessment of operator workload. To ensure 

comprehensiveness, ISA is often used in conjunction with other 

subjective techniques. 

When: 
During the task 

 Name: NASA-Task Load indeX (NASA-TLX) 
NASA Task Load Index (TLX) method assesses workload on a 6 dimensions 7-point scales. It 
is a subjective, multidimensional assessment tool used to rate perceived workload in order to 
assess a task, system, or other aspects of performance. NASA TLX should be used at the end 
of the experiment / block of trials of the considered condition. Users require two separate 
forms. The first form is a table of definitions for their reference throughout the process 
(NASA-TLX Reference Sheet Definitions). The second form contains the actual survey items 
(NASA Task Load Index Rating Scales). 

Dimension 
addressed: 
State 

Type of metric: 

Self-report 

Subjective 

Expertise required: 
Intermediate 

Time 
requirements: 
High 

Material 

necessary: 

Paper/pencil 

Commentary/limitations: 

Two versions (weighted or unweighted) can be administered to take into 

account the individual participants sensitivity to the various workload 

sources as defined by the 6 subdimensions of the NASA-TLX. It is very 

important that the definitions of the 6 subdimensions are interpreted 

with the same meaning by all participants. In the non-weighted version, 

the scores from every item are summed and then the sum is divided by 6 

When: 
After the task 
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to obtain an overall score between 0 - 100. The weighted value is 

computed as an overall weighted workload score for each respondent is 

computed by multiplying each rating (between 0 and 100) by the weight 

(between 0 and 5) given to the factor by that respondent. The sum of the 

weighting ratings for each task is then divided by 15 (the sum of the 

weights). The added value of this measure is the possibility to break down 

workload into various sources, but some dimension could be difficult to 

interpret.  

 

4.10 Usability and acceptability 

General domain addressed: Usability and acceptability 
Acceptability refers to the extent to which a system is perceived by users as appropriate, useful, 
usable, trustworthy and desirable. It influences their willingness to adopt and continue using the 
system on long term. Several dimensions such as trust, safety and ease of use are known to be 
fundamental for user acceptance. On the other hand, usability refers to “the extent to which a 
system can be used by specified users to achieve specified goals effectively, efficiently and with 
satisfaction in a specified context of use.” Usability has multiple components and is traditionally 
associated with five attributes: Learnability, Efficiency, Memorability, Errors, Satisfaction.  

 Name: System Usability Scale (SUS) 
The SUS yields a single number representing a composite measure of the overall usability of 
the system being studied. It takes into account two factors of a system: its usability and its 
learnability. It is a 10-item scale in which participants provide their agreement on a 5-point 
Likert scale going from “1. Strongly disagree” to “5. Strongly agree”. This scale should be 
used prior to any debriefing with the participant 

Dimension 
addressed: 
Attitude 

Type of metric: 

Self-report 

Subjective 

Expertise required: 
Novice 

Time 
requirements: 
Low 

Material 

necessary: 

Paper/pencil 

Commentary/limitations: 

All items are not presented with the same valence. To calculate the score, 

one should add the score of each item. For items 1, 3, 5, 7 and 9, the 

individual score is the grade received minus 1. For items 2, 4, 6, 8 and 10, 

the contribution is 5 minus the grade received. The sum of all scores is 

then multiplied by 2.5, and this is how the total value of SUS is obtained. 

After the scoring and the calculation of the score, it is possible to classify 

the evaluated system. 

When: 
After the task 

 Name: Acceptability scale 
The acceptability scale is a tool for studying acceptance of new technological equipment. It is 
simple and consists of 9-item where users provide their evaluation on 5-point rating scales. 
These items load on two scales, a scale denoting the usefulness of the system, and a scale 
designating satisfaction.   
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Dimension 
addressed: 
Attitude 

Type of metric: 

Self-report 

Subjective 

Expertise required: 
Novice 

Time 
requirements: 
Medium 

Material 

necessary: 

Paper/pencil 

Commentary/limitations: 

Items 1, 2, 4, 5, 7 are scored on a scale from [+2] to [-2] whilst items 3, 6, 8 

are mirrored and should be scored from [-2] to [+2]. The Usefulness scale 

is the average of item 1, 3, 5, 7 and 9 (so it has a range from -2 to +2) 

whilst the Satisfying scale is the average of items 2, 4, 6, and 8. Here, 

acceptance is measured by direct attitudes towards a system. Practical 

aspects of the system are reflected in the usefulness score, while the 

pleasantness is mirrored in the satisfying score. 

When: 
After the task 

 Name: User acceptance of automation scale 
The user acceptance scale is a 7-item scale to which users provide their feedback on a 7-point 
Likert scale from “1. Totally disagree” to “7. Totally agree”. This scale evaluates the average 
acceptability of a system or tool by a user. It can be adapted to both systems and artificial 
agents.  

Dimension 
addressed: 
Attitude 

Type of metric: 

Self-report 

Subjective 

Expertise required: 
Novice 

Time 
requirements: 
Medium 

Material 

necessary: 

Paper/pencil 

Commentary/limitations: 

It is adapted from a longer 26-item scale and selects specifically trust, 

safety and perceived ease of use related items which are fundamental to 

acceptance measure. This scale can share redundancies with trust, 

performance and usability measures. When: 
After the task 
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5 Conclusions 

This deliverable provides guidance for people interested in quantifying and characterising the impact 
of the introduction of artificial agents on human operators. To guide this choice, this deliverable 
proposes a general process to select adequate metrics depending on the artificial agent evaluated but 
also depending on the expertise of the evaluators and the material available. This framework first 
defines relevant dimension of interest when considering the introduction of an artificial partner. For 
each dimension of interest identified, the deliverable proposes a set of metrics. The deliverable also 
specifies, for each metric, the expertise required to administer this metric, the time required to 
administer and/or compute this metric, the material necessary to administer this metric and the 
moment of the moment when it should be administered. Commentaries and limitations regarding 
each metric are added. 

Not all measures are intended to be used simultaneously. For each assessment campaign, it will be 
necessary to identify the most relevant dimensions of interest, particularly with regard to the risks 
identified beforehand (see D2.1). It will then be a matter of choosing the most relevant metrics for the 
dimensions of interest according to the measurement resources available, the nature of the task, the 
nature of the interaction between the crew and the virtual assistants, the time available and the 
experimenters' own skills. The measures presented here therefore constitute a pool of metrics from 
which experimenters can pick and choose to best quantify the impact of the tool being evaluated for 
the use case under study. 

Two limitations of the evaluation framework have been identified here. The first one is the fact that 
many measures (self-report, questionnaires, behavioural or physiological) reported in the literature 
are tested in lab-based environments where independent variables are more or less easy to identify 
and to set up. In these cases, biases and confounding variables are also easier to control for. In more 
ecological or operational contexts, tasks are more complex and individual factors variables or 
processes taking part into these tasks are more difficult to isolate. Thus, confounding variables can 
render the interpretations of variations in measures trickier. Similarly, as processes engaged in the 
realisation of such operational tasks are intricated, some measures or variables tend to interaction 
with each other. As an example, the XAI trust scale or pupillometry are two very different measures 
(subjective vs. objective, self-report vs. physiological) but both of them have been shown to be 
modulated by trust as well as workload. Showing the very high entanglement of these two concepts 
as variables. We have tried as much as possible to display the known correlations in the tables 
reporting measures. Unfortunately, unknown entanglements can still appear.  

The second limitation relates to the systems considered in the evaluation framework of the SafeTeam 
project. Several dimensions identified in the metric selection process refer to several processes that 
may arise during collaboration, cooperation and interaction. These processes are often based on what 
we know from human-human interaction. Dimensions such as agency, trust, explainability or 
communication may require the system to have more intelligent or agentic abilities. Yet, the systems 
evaluated in SafeTeam lack these abilities. They can be considered more as Level 1 AI (as described in 
the EASA concept paper on AI) and are providing assistance to human operators’ decision making, 
compared to Level 2 AI which refers to cooperative and collaborative AI.  Still, several measures are 
either relevant for both (e.g., workload, mental models, team performance) or can be adapted to 
decision making tools, as well as artificial agents. This limit was also adressed whenever necessary in 
Tables providing measures for Human-Autonomy Teaming evaluation. In the SafeTeam evaluations 
though, we have had to select only those appropriate according to the type of system.  
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