B Ref. Ares(2025)5195390 - 30/06/2025

Safe

D2.2 - Human-Machine
Collaboration in Operations and
Performance Monitoring

Document number D2.2

Document title Human-Machine Collaboration in Operations and Performance Monitoring
Version 1.0

Work package WP2

Edition date 30.06.2025

Responsible unit ONERA

Dissemination level PU

Project acronym SafeTeam

Grant 101069877

Call Safe, Resilient Transport and Smart Mobility services for passengers and goods
(HORIZON-CL5-2021-D6-01)

Topic HORIZON-CL5-2021-D6-01-13: Safe automation and human factors in aviation —
intelligent integration and assistance

This project has been funded by the European Union under Grant Agreement 101069877

RN Funded by
L the European Union

© SafeTeam Consortium.

SafeTeam: Safe Human-digital assistant Teaming in the advent of higher levels of automation in aviation



SafeTeam Consortium

@innaxis Innaxis (INX)

AES A Agencia Estatal de Sequridad Aérea (AESA)
AGENCIA ESTATAL
DE SEGURIDAD AEREA
m Technische Universitat MUnchen (TUM)
L] . e L ]
L] '
.- DataBeacon DataBeacon
.. o L
ONERA
——— ONERA
EIE Rise Research Institutes of Sweden AB (RISE)
PEGASUS ./ PEGASUS HAVA TASIMACILIGI ANONIM SIRKETI (PEGASUS)

AIRLINES

CAA INTERNATIONAL LIMITED (CAAi)

Document change record

0.1 28/05/2025 Initial draft
1.0 30/06/2025 Final submission

Pagel 2



Abstract

The SafeTeam project aims to investigate the power of digital assistants and how new technique can
improve safety in the aviation domain and incorporating human factors theory to ensure that safety
measures are followed throughout the implementation process. In particular, SafeTeam project has
developed a framework with the purpose of helping individuals who lack expertise in human factors
to consider such aspects and improve human-autonomy collaboration. Part of this framework
considers how to quantify the impact of the digital assistant proposed on critical human dimensions.

The work presented in this deliverable describes the process of selecting relevant metrics for
practitioners interested in quantifying and characterizing the impact of the introduction of artificial
agents on human operators. To guide this choice, this deliverable proposes a selection of metrics for
each dimension of interest. It also specifies, for each metric, the expertise required to administer this
metric, the time required to administer and/or compute this metric, the material necessary to
administer this metric and the moment of the moment when it should be administered.
Commentaries and limitations regarding each metric are added to help evaluators with their choice.
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1 Introduction

1.1 Background

The aviation industry is undergoing a significant transformation, with the integration of intelligent
digital assistants and increasing levels of automation becoming central to future operational
concepts. While these innovations offer significant potential to enhance safety, efficiency, and
resilience, they also introduce new challenges, particularly concerning human performance, trust, and
human-machine collaboration (Halawi, Miller, & Holley, 2024; Kirwan, 2023). A key issue in this
context is the lack of accessible human factors (HF) evaluation methods and criteria that can be
reliably applied to assess and guide the integration of these technologies, especially by stakeholders
who may not be HF experts.

This gap is particularly problematic given that human error remains a predominant contributor to
aviation incidents and accidents (Mathavara & Ramachandran, 2022). As automation becomes more
capable, there is a risk that poorly designed interactions can exacerbate human performance issues
such as complacency, workload mismanagement, and the well-documented Out-Of-The-Loop
(OOTL) phenomenon (Endsley & Kiris, 1995; Gawron, 2019). Without clear guidance or usable
evaluation frameworks, designers, operators, and regulators alike may struggle to ensure that digital
assistants truly support—rather than undermine—the human operators they are meant to help.

The SafeTeam project—and specifically this work package (WP2)—aims to address this challenge. In
Deliverable 2.1 (D2.1), a simplified design guide was introduced to support the integration of human
factors into system design, even for non-experts. D2.1 presented a structured, iterative approach for
modelling human-autonomy teaming (HAT) and incorporating human factors from the early design
stages. This report, Deliverable 2.2 (D2.2), builds on that foundation by focusing on how to evaluate
human performance and human-machine collaboration in the context of these systems.

The objective of this report is to present an accessible and practical framework for defining and
selecting metrics and procedures to access the human side of digital assistant integration. The goal is
to enable a wide range of stakeholders—including designers, developers, assessors, and end users—
to evaluate how automation affects human performance and to ensure safe and effective
collaboration between humans and machines. This framework is particularly designed to be
applicable across different operational case studies, thereby contributing to the generalisability and
scalability of the SafeTeam approach across the aviation domain.

1.2 Theoretical foundations

The SafeTeam framework is grounded in core concepts from HF, Cognitive Systems Engineering
(CSE), and Human-Autonomy Interaction (HAI), with a particular focus on supporting non-expert
users in understanding and evaluating the impact of automation. At its core is the recognition that
automation in complex socio-technical systems, such as aviation, must be designed not only for
technical performance but also for human compatibility, situation awareness, and cognitive
resilience.

Human Factors and Ergonomics (HF/E) aim to optimize the interaction between people and systems
by designing technologies, tasks, and environments that align with human capabilities and limitations
(Salvendy, 2012). Within aviation, HF is critical to ensure that digital assistants enhance—rather than
compromise—performance, safety, and trust (Kirwan, 2023). As automation becomes more
autonomous and less transparent, the need to actively design for explainability, control, and mutual
understanding becomes paramount (Hoffman et al., 2023).
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Human-Autonomy Teaming (HAT) expands traditional Human-Autonomy Interaction (HAI) by
framing automation as a cooperative agent rather than a tool. This perspective highlights the
importance of shared goals, mutual observability and directability, and adaptive coordination
strategies. In high-stakes environments like flight operations or air traffic control, effective teaming
between human and automated or autonomous agents must consider trust calibration, workload
management, and the preservation of operator agency.

To address these challenges, the SafeTeam approach introduces a structured, iterative methodology
that draws on several theoretical foundations:

e Levels of Automation (LOA), such as the Sheridan and Verplank scale (Sheridan & Verplank,
1978), which help classify the degree of autonomy in system functions and inform appropriate
task allocation between human and machine.

e Function allocation principles, particularly the updated HABA-MABA (Humans Are Better At
/ Machines Are Better At) approach, which encourages evaluating tasks based on strengths
and limitations of each party in dynamic, context-dependent ways (Dekker & Woods, 2002).

e OOTL performance problem, which describes the cognitive risks associated with operators
being disengaged from the system due to excessive or opaque automation (Endsley & Kiris,

1995).

e Transparency and situation awareness frameworks, which emphasize the importance of
understanding system intent and state for maintaining effective human performance
(Endsley, 1996).

These foundations were operationalized in D2.1, where a process was developed for non-experts to
assess human-autonomy collaboration in the design phase. D2.2 extends this by focusing on the
evaluation phase; specifically, how to select and use metrics to monitor performance, diagnose risks
like OOTL, and support iterative improvement. To keep this report focused and accessible, a full
recapitulation of the theoretical underpinnings of the design framework (and the models and
processes of the design framework itself) is avoided here, but readers are encouraged to refer to D2.1
for a detailed exposition.

1.3 Outline

This document provides a practical guide for evaluating human-machine collaboration in systems that
incorporate intelligent digital assistants. Building on the HF design principles established in D2.1, this
report focuses on how to assess and monitor human performance, particularly in relation to
collaboration, safety, and resilience.

The structure of the document is as follows:
e Section 2: Process Description

Before evaluation can begin, the system under assessment must be clearly defined. This
includes understanding who the end users are, how the system is intended to be used, what
problems it aims to solve, and what the potential implications are for safety, efficiency, and
user satisfaction. For those who followed the design framework in D2.1, much of this
information will already be documented. For others, this section outlines the minimum
information required to proceed with a meaningful evaluation.
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Section 3: Metrics Selection Process

This section guides practitioners through the process of selecting appropriate evaluation
metrics. It includes practical considerations such as feasibility, constraints, and the influence
of system characteristics (e.g., level of autonomy, type of interaction). Various parameters
influencing the choice of metrics and selection criteria are presented to drive the practitioners
to ask the right questions and consider the essential aspect for their study when considering
Human-system interactions assessment.

Section 4: Selected metrics

This section lists many metrics available in the literature to evaluate human-system
interaction in the dimensions addressed by the SafeTeam framework. Metrics are grouped
into categories and suggestions are provided for combining methods through triangulation.
Guidance is also offered on data collection techniques, (e.g., questionnaires, eye-tracking,
observation) and on how to match evaluation methods to the specifics of the case at hand.
All the assessment parameters presented so far (practitioner’s expertise, time requirement,
material necessary, etc.) are considered and associated to each metric individually in order to
provide a synthesis for practitioners to support their evaluation and select the appropriate
metrics.

Appendices

To keep the main report concise and accessible, examples and more detailed illustrations of
the process are included in the appendices. These include adapted SafeTeam case studiesand
visual tools such as flowcharts or decision aids.

Each section is intended to be usable on its own, but together they provide a complete guide; from
scoping the evaluation to selecting and applying metrics in operational or simulated settings.
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2 Process Description

2.1 Case description

To effectively evaluate human-machine collaboration, it is important to first define the system under
assessment in sufficient detail. Evaluation is only meaningful when it is grounded in a clear
understanding of the system'’s purpose, how it is used, and by whom. This section outlines the
minimum information needed to support metric selection and performance evaluation.

Core Elements for Evaluation

Practitioners should begin by clarifying the following aspects of their system:

End Users

Who are the people interacting with the system? What are their roles, responsibilities,
training levels, and relevant constraints? Understanding the user population is important for
choosing appropriate metrics and interpreting results. See I1SO (2019) for further reading.

Use Context

In what operational setting is the system deployed or intended to be deployed? What are the
environmental, procedural, and organizational conditions that frame its use (e.g., cockpit
operations, ATC tower, training simulator)? Are there critical moments of use (e.g., high
workload, emergency scenarios)? See ISO (2019) for further reading.

Envisioned Human-System Interaction

How does the system support or collaborate with the user? What is the level of automation,
the degree of user control or supervision, and the nature of feedback and information
exchange? This includes understanding whether the system operates in real time, offer
recommendations, or autonomously takes action. See Stanton et al. (2013) and Kirwan and
Ainsworth (1992) for relevant methods.

Design Goals and Intended Benefits

What problems or gaps is the system designed to address? Are the goals primarily safety-
related (e.g., reducing error), performance-related (e.g., increasing throughput), or
experiential (e.g., improving trust or user satisfaction)?

Potential Implications for Safety, Efficiency, Satisfaction

What are the anticipated risks or benefits of introducing the system? This includes changes in
workload, situation awareness, human error, communication patterns, or training needs.
These anticipated effects will help focus the evaluation on what matters most. See Stanton
et al. (2013) and Kirwan and Ainsworth (1992) for a selection of methods.

Starting Point: With or Without D2.1

For readers who have designed their system using the SafeTeam design framework from D2.1, much
of this information will already be available. The output from D2.1, such as the Hierarchical Task
Analysis (HTA), agent roles, and identified design considerations, can be directly reused as input to
the evaluation process.
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For those entering at the evaluation stage without having followed D2.1, we strongly recommend
documenting the above points before selecting metrics. This documentation does not need to be
exhaustive, but it should provide a shared understanding across stakeholders (designers, evaluators,
end users) of what the system is (structural), what it is supposed to do (functional), and what
constitutes success.

Summary: Minimum Required Information

At a minimum, the following elements should be available before metric selection begins:

A description of the system and its operational context
A definition of the user population and use scenarios
A high-level model of the human-system interaction (e.qg., tasks, control flow, feedback loops)

A list of targeted outcomes or concerns (e.g., reduced workload, increased situation
awareness or trust)

Known constraints (e.g., time, access to users, technical limitations)

This shared understanding serves as the foundation for identifying what to measure, why, and how.
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3 Metrics Selection Process

3.1 Evaluation methodology: Experimental approach

The aim of the methodology is to explore the impact of proposed design choices on human-system
cooperation. This implies being able to quantify this impact rigorously. However, this quantification
comes up against a major challenge: the variability of human behavior. This behavioral variability
results from the fact that each behavior depends on different characteristics:

e Characteristics specific to the situation,
e Characteristics specific to the subject (history, expertise, biological characteristics).

The experimental method is traditionally used to put the human operator in a controlled situation and
to analyze his activity through different levels of analysis (subjective, behavioral, or physiological).
This approach is based on a probabilistic principle which, with reference to a database, makes it
possible to account for the probability that certain events, under certain conditions, may be
correlated. This gives rise to a principle in which an attempt is made to generalize from a small sample
(Campbell & Stanley, 1963; Millsap & Maydeu-Olivares, 2009).

Experimentation therefore consists of creating (or isolating) sources of variation and checking that
the variations induced are statistically significant compared with simple chance. These sources of
variation that we are trying to test are what we call independent variables, i.e. variables that we are
going to manipulate voluntarily and that are supposed to have an impact on the phenomenon to be
measured. The induced variations that we are seeking to measure are dependent variables. These
dependent variables are selected to best represent the factors we wish to assess (e.g., cognitive load,
fatigue, performance, etc.). These two elements (situations in which the subjects are placed and
measurements) constitute an experimental paradigm (Campbell & Stanley, 1963; Millsap & Maydeu-
Olivares, 2009).

In order to ensure that the effects observed are not the result of chance or of factors other than those
being manipulated, the experimental approach ensures (1) that the conditions being compared differ
only in the variable being manipulated, and (2) that the participants carry out a sufficient number of
repetitions. Finally, to control the influence of all the other variables likely to influence behaviour
(fatigue, learning), it is important to account for the order of the trials and the counterbalancing
between conditions: this is known as the experimental design (Campbell & Stanley, 1963; Millsap &
Maydeu-Olivares, 2009).

All the choices made (independent variables, dependent variables, experimental paradigm,
experimental design) constitute the experimental protocol. The main objective of this document is to
define the dependent variables, i.e. the measures, that will be collected to characterise the impact of
the proposed manipulations on human Al cooperation.

3.2 Metric selection: Required properties

Several criteria exist and have been proposed as guidelines for selecting and developing techniques
(Wierwille and Eggemeier 1993; NASA 2014; Matthews et al. 2015; Longo 2015; Heard, Harriott, and
Adams 2018).

The first set of criteria establishes most directly the validity of the measure. That is, the measure
should reflect changes in the dimension measured (sensitivity) but no change in other constructs that
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are not directly reflective to this dimension (selectivity). Moreover, the measure should be able to
distinguish the sources responsible for the change (diagnosticity). While each single measure will not
be able to respond to all these criteria, it is rather the combination of measures that should fulfil these
properties. As there is no universal ideal combination of measure for all tasks and all contexts, it is
necessary to define for which level the measure is relevant (range) and whether the measure is
dedicated to specific tasks or can be used in different tasks (transferability).

e Sensitivity: Capacity to detect changes in the cognitive state investigated. The sensitivity of
the measure describes the extent to which the measure changes when this cognitive state
changes.

e Selectivity or reliability: Reflects the sensitivity only to differences in the cognitive state
explored, not changes in other variables. It describes how consistently the measure will
change when and only when this cognitive state changes.

e Diagnosticity: Capacity to differentiate distinct sources resulting in change of the cognitive
state explored.

e Bandwidth orrange: Relates to the region where the metric is reliable for the cognitive state
explored. For example, when considering workload, range corresponds to the level of
workload (underload, fitting load, overload) within which the measure reliably reflects
workload changes.

e Transferability: Consistent assessment of the cognitive state explored both within and across
tests that allow it to be used in different applications.

e Temporal resolution: Relates to the time window necessary to compute the metric. The
smaller the global required time, the better the temporal resolution.

The second set of factors is essential for ecological contexts and focuses on elements that may lead
to turn down specific measurements. It emphasizes possible interference with the required task
(intrusiveness), but also unsuitable technical requirements associated with the measurement
technology, and the question of operator acceptance:

e Intrusiveness: Lack of interference with task performance; moreover, the measure should
not be a source of change in the dimension observed, or in any other dimension.

e Implementation requirements: Practical constraints associated with instrumentation,
software, and training.

e Acceptability: Operator perception of the validity and usefulness of the procedure.

If sensitivity is always a major consideration in the choice of a measurement technique, other criteria
may be particularly relevant, especially when the experiment is not a laboratory task. Notably,
intrusiveness, implementation requirements and operator acceptability appear as a first concern in
SafeTeam methodology as the methodology is intended to be used by non-expert practitioners in
ecological environment. For example, intrusiveness of the measuring system (the hardware for
physiological measures as well as the frequency and length of interruptions for subjective ones) may
lead to the Hawthorne effect — or a halo effect of social desirability (Krumpal, 2013) — rendering the
results untrue in a real-life scenario. Decreasing the intrusiveness of the experimental set-up would
make it less likely to observe such behavior. Acceptability may be of great significance in a real
operational environment, while the implementation requirements (and also the complexity of the
analysis) can clearly have an impact on the ability of non-HF experts to use this method.

Based on these various constraints, a number of useful metrics will be proposed in the remainder of
this document.
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3.3 Categories of measurements

Evaluation data can be collected from multiple perspectives or viewpoints to enable broad and rich
insights into the qualities and integration effects of a product. These perspectives include:

e Task performance: Quantifiable measures such as time-on-task, error rates, number of
actions, and end states, gathered through manual recording or system logs.

e Participant self-assessments: Subjective ratings collected via validated or customised scales
capturing constructs like workload, situation awareness, perceived performance or difficulty,
and usability.

e Behavioural observation: External assessment of participant behaviours during interaction,
conducted in real-time by observers or retrospectively via video analysis.

Orthogonal to these perspectives is the distinction between objective and subjective data types.
Though often positioned as opposites, in practice they serve complementary roles in evaluation.
Objective measures aim to capture observable, quantifiable phenomena, such as the time taken to
complete a task, the number of actions performed, or error rates. These data are valued for their
repeatability and reduced susceptibility to personal biases. However, they can overlook important
internal experiences like perceived effort, frustration, and strategic decision making that are not
easily observable (Jahedi & Méndez, 2014).

Subjective measures, on the other hand, captures the participant’s internal state or personal
evaluation, for example through self-reported workload, situation awareness, or satisfaction.
Although subjective ratings are inherently influenced by individual perceptions, emotions, and
memory biases, they provide insights into the user experience that objective measures alone cannot
reveal (Muckler & Seven, 1992).

Importantly, the distinction is not always clear-cut; an observation by a third party (like an expert
rating a user's performance) may be considered “objective” in form but still carries interpretive
subjectivity. Likewise, physiological measures (e.g., heart rate variability, eye-tracking, or EEG) are
technically objective but may require subjective interpretation regarding their meaning in context
(Muckler & Seven, 1992).

Combining these multiple sources and perspectives enable triangulation of findings, offering a more
comprehensive and reliable evaluation (Denzin, 2017). While objective performance metrics provide
hard data on outcomes and efficiencies, subjective assessments and behavioural observations add
important context about user experience, strategy, and affective states (Jahedi & Méndez, 2014;
Muckler & Seven, 1992). By integrating performance data, self-assessment data, and behavioural
observation data (across both objective and subjective dimensions) evaluators can mitigate the
limitations inherent in any single data source, such as self-report biases, observer interpretive
variance, and measurement artifacts, and gain a holistic and nuanced view of human-system
interaction.

3.4 Data collection methods

Having identified the contextual constraints and categories of measurement, the next step is to
choose suitable methods for retrieving the relevant data. Each method corresponds to different types
of information, e.g., objective vs. subjective, first-person vs. third-person perspectives, and offer
distinct strengths and limitations. The selection of methods should balance practical feasibility (as
discussed in sections 3.1 and 3.3) with the need for validity, repeatability, and interpretability (as
discussed in section 3.2).
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Where possible, we recommend a triangulation approach: using multiple methods to measure the
same construct, or collecting data from different stakeholder perspectives (e.g., end-user, system,
observer) (Denzin, 2017). This not only increases robustness but also helps reconcile discrepancies
between subjective experience and observed or recorded behaviour.

Below, we review key categories of data collection methods and describe how they can be applied in
the context of HAT evaluation.

3.4.1 Physiological and biometric measurements

Psychophysiology attempts to interpret psychological processes through their effect on the body
state. Among the many advantages of this approach, physiological measures produce continuous and
objective measurements of the operator state (Lohani et al., 2019).

On a general note, the ever-evolving technologies have allowed to record more and more easily
operators’ state in everyday-life-like or ecological settings. The aeronautics domain is not spared by
this evolution and is actually a lead actor in ecological psychophysiological evaluation of the state of
operators. The necessity to move from lab tasks to ecological setting is essential, and was already
mentioned more than 20 years ago. On the one hand, the Hawthorne effect (Mayo 2010) has proven
to be detrimental as it tends to improve participants’ performances and motivation. On the other
hand, the various stimulation but also environmental noise and variable experimental conditions tend
to lower performance, as well as our ability to record exploitable data. Many factors such as task
difficulty, engagement, perceptual stimulation and attention variation are very different in lab tasks
compared to real experiments. Nevertheless, the miniaturization of systems and improvement of
data-processing algorithms has allowed to record psychophysiology data out of the lab. A quick
search on “real flight psychophysiological measures” in Google Scholar reveals more than 29000
publications with more than half of them (27300) in the last 10 years. This motivation is not limited to
MWL evaluation in aeronautics but also to emotion evaluation (Healey et al. 2010), auditory
perception (Debener et al. 2012), inattentional deafness (Somon et al. 2022), and general cognition
(see Lohani et al., 2019 for a review) for various applications. Nowadays, physiological markers are
used as real-time indicators of users’ cognitive and emotional states, such as mental workload,
situation awareness, arousal, and stress. Common techniques include:

e Eye-tracking

Tracks gaze direction, number of fixation and their duration, eye blink rate and blink duration,
saccades, and pupil diameter. These metrics are useful for assessing visual attention
distribution, interface usability, and situation awareness (e.g., failure to fixate on critical
displays), and trust (Hergeth et al., 2016).

e Electroencephalography (EEG)

Measures electrical activity in the brain via scalp electrodes. This can be useful for inferring
cognitive load, fatigue levels, or task engagement or vigilance (Berka et al., 2007).

e Heart rate and Heart Rate Variability (HRV)

Captured through elecrocardiography (ECG) or wearable sensors. HRV is often used as a proxy
for mental effort or stress, where low HRV suggests higher workload or stress. This can be
useful for comparing baseline to task performance periods (Lohani et al., 2019).
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Respiratory activity

Duration of inspiration (Ti), duration of expiration (Te), total cycle time (Ttot), and tidal
volume (VT) that represents the volume that is displaced by one breath. Stress and mental
effort are associated with an increase in respiratory rate and a decrease in respiratory volume
(NATO 2004) whereas the respiratory volume is generally increased when the demands are
very high (Harding 1987).

Functional Near-InfraRed Spectroscopy (fNIRS)

Measures the hemodynamic brain activity with optical near-infrared light to estimate the
cortical variations of oxy- and deoxyhemoglobin (respectively HbO2 and HbR) concentration
in response to neuronal activity (lzzetoglu et al. 2005). As illustration, studies have
demonstrated an increase of HbO2 concentration under high MWL conditions, as well as
increased oxygenation (as computed with the [HbO2]/[HbR] ratio and [HbO2] versus [HbR]
difference) in the prefrontal cortex (Mandrick et al. 2016).

Galvanic Skin Response (GSR) / Electrodermal Activity (EDA)

Reflects changes in skin conductance due to sweating. This is typically correlated with
elevated arousal or stress (Boucsein, 2012).

Infrared thermography (IRT)

Detect the distribution of the temperature of a scene through infrared radiations analysis. At
the human physiological level, IRT is used on facial imagery by assessing the emitted
electromagnetic radiations reflected by the surface of the skin. Correlated to change in
emotions (Dzedzickis, Kaklauskas, and Bucinskas 2020; Zenju et al. 2004), alertness
(Sakamoto et al. 2006), arousal (Diaz-Piedra, Gomez-Milan, and Di Stasi 2019) and mental
workload (Mizuno, Mito, and Itakura 2020).

However, physiological measurements come with important limitations. First, they typically require
specialized equipment and calibration. Second, they may be obtrusive or impractical in operational
environments. Finally, as mentioned in section 3.3, interpretation can be non-specific, e.g., increased
arousal could mean stress, engagement, or surprise. Therefore, physiological measurements are
rarely useful or insightful on their own but benefit from triangulation to contextualize interpretation.

3.4.2 Behavioural observation and system interaction logging

This class of methods captures what users do during interaction with a system, typically from an
external perspective. It includes real-time observation and retrospective analysis of recorded
behaviour (Kuniavsky, 2003; Rubin et al., 2008). Common methods include:

Pagel14

Direct observation (in person or via video stream)

Human observers document user actions, hesitations, interactions, and behaviours using
structured coding schemes, free notes, or active participation. This is valuable for
understanding task strategies, identifying usability issues, and assessing communication in
team settings (Cooke, 1994; Howitt, 2013; Jordan & Henderson, 1995; Wixon et al., 1990).



e Simulation or real-world video review

Sessions can be reviewed by evaluators or users themselves, enabling debrief and
retrospective insights and the discovery of latent issues not apparent (or possible to examine)
in real-time (e.g., Alhadreti & Mayhew, 2018; Mahatody et al., 2010).

e System and interaction logs

Automatically capture time-stamped data on task performance (e.g., task duration, error
rates, system states), use of automation (e.g., frequency, overrides, timing), or response to
system prompts or failures (e.g., Hilbert & Redmiles, 2000).

General limitations of these family of methods include the need for trained coders to ensure
consistency in live and video observation and note-taking. Real-time observation may miss subtle
behaviours, while video allows replays and cross-checking. System logs provide objective data but
lack context or reasoning.

3.4.3 Self-report instruments

Self-report methods offer a direct way to access the internal, subjective experience of users; what
they felt, thought, or perceived during or after interaction with the system. While such data are
inherently introspective and potentially biased, they are essential for assessing constructs what are
otherwise difficult to observe or measure objectively, such as trust, usability, perceived workload,
satisfaction, or clarity in system behaviour (Muckler & Seven, 1992; Jahedi & Méndez, 2014). Key
approaches include:

e Structured questionnaires

Structured questionnaires provide a predefined set of items and response options to elicit
user input. These can be administered immediately after a task, at the end of a session, or
periodically over time (e.g., in longitudinal evaluations). They are efficient, scalable, and allow
for quantitative comparison across participants or systems.

o Standardized tools

These are validated instruments developed and tested across multiple studies or
domains. They allow for benchmarking and statistical comparisons, often using fixed
formats like Likert scales (Cooke, 1994). Examples include the NASA Task Load Index
(NASA-TLX) (Hart, 2006; Hart & Staveland, 1988) to measure perceived workload
(over dimensions like mental demand, physical demand, or frustration) and the
System Usability Scale (SUS) (Lewis, 2018) to provide a quick and general measure of
perceived usability. It could be unidimensional ratings, hierarchical ratings or
multidimensional ratings.

Standardized tools are especially useful in mature projects or comparative
evaluations, and benefit from established scoring and interpretation guidelines.
Rating scales are the most practical and generally applicable measures.

o Custom questionnaires

When no standard instrument fits the evaluation needs, tailored questionnaires can
be developed. These are particularly useful for capturing system-specific concerns
(e.g., perceived helpfulness of a flight assistant), following up on observed issues or
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themes raised in interviews, or eliciting opinions on new features or changes during
iterative prototyping.

Custom instruments should still be designed with care; using clearly worded items,
balancing phrasing (to avoid acquiescence bias), and appropriate response scales
(Lietz, 2010; Oppenheim, 2000; Sauro & Lewis, 2011).

e Free-text feedback and open-ended questions

These allow users to explain their experience in their own words to highlight contextual or
emotional nuance (e.g., “it felt like the assistant took control at the wrong time”), emerging
issues not anticipated by designers, and potential mismatches between system behaviour
and user expectations. While free-text responses are more difficult to quantify, they are
valuable in exploratory or early-stage evaluations and can point to areas needing redesign
(Cooke, 1994).

e Interviews

Interviews provide a richer, dialogic approach to understanding user experience. They are
typically used after simulation runs or system use and can be conducted in person, remotely,
or during post-session debriefs.

Structured interviews follow a fixed set of questions and are ideal for formal studies requiring
comparison across users. Semi-structured interviews begin with a guide of key topics but allow
flexibility to explore unexpected areas of concern or user insight. Unstructured interviews are
conversational and exploratory, suitable during formative research or usability testing
(Cooke, 1994; Howitt, 2013).

Interviews are especially useful for uncovering mental models, misunderstandings, or value
judgments users may not express in structured forms.

e Focus groups

Focus groups gather multiple stakeholders (e.g., pilots, controllers, instructors) to discuss
their experiences, concerns, or expectations. These sessions are useful for identifying areas
of consensus or disagreement, exploring social and organizational dynamics (e.g., training
acceptance, trustissues), and validating early design directions or evaluation criteria (Howitt,
2013; Krueger & Casey, 2015).

Group dynamics can stimulate new ideas, but moderation is important to ensure balanced
participation and avoid groupthink or dominance effects (Howitt, 2013).

The use of self-report methods warrants several considerations. For instance, timing the
administration of self-report instruments is important; immediate post-task responses reduce recall
bias. Interpretation of self-reported data also benefits from triangulation, where subjective data are
strengthened when supported by behavioural evidence or expert analysis. Another potential issue is
fatigue, where over-surveying can impact data quality. Self-report methods should be used sparingly
or combined with short-form tools where needed.

Subjective measures have practical advantages (ease of implementation, overall non-intrusiveness)

and are considered the easiest method for cognitive state measurement. However, several drawbacks

still remain. The first main criticism of this type of measures is that they are subject to both subjective

distortion and social desirability bias (FUrstenau & Radintz, 2022; Radintz, 2017), leading to possibly

biased values. Second, they have generally poor temporal resolution. While increasing the sampling
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rate for operator feedback via the questionnaire could lead to improved temporal resolution, this may
actually have the negative impact to interrupt the task being performed. In addition, most subjective
measures tend to suffer from memory lapses as the measure is not made during the event but after.
Finally, it must be noted that these subjective measures generally have high between-rater variability
due to their possible emphasizing of personal subjective biases.

Considerations for all self-report methods overviewed in this section include selecting the appropriate
timing of administration (e.g., immediately post-task to minimize recall bias), limiting survey fatigue
through concise instruments, ensuring consistent interpretation of scale anchors across participants,
and triangulating subjective responses with behavioural or physiological data to improve
interpretability and robustness.

3.4.4 Expert and peer-based evaluation

Expert and peer-based evaluations rely on the informed judgment of individuals with domain
knowledge, either in human factors, systems engineering, operations, or training. These methods are
particularly valuable when objective metrics are difficult to define, or when qualitative interpretation
of performance is needed. They also provide useful input in early-stage design (e.g., identifying
potential issues) or as part of a validation exercise where external judgment is required (e.g.,
certification, safety case preparation) (Klein et al., 2004; Mahatody et al., 2010; Nielsen & Molich,
1990). Common approaches include:

e Heuristic evaluations

Heuristic evaluation involves expert reviewers systematically inspecting a user interface or
system workflow against established human factors or usability principles (Nielsen & Molich,
1990). For example, “Does the system provide clear and timely feedback?”, “Can the user
understand and control automation behaviour?”, or “Is the interface consistent and
predictable?”.

This method is low-cost and rapid, particularly useful during prototyping or for highlighting
known usability traps (e.g., hidden states, unclear handovers). Common heuristic sets include
usability heuristics (general interface design) (Nielsen & Molich, 1990), aviation-specific
checklists (e.g., for cockpit HMI layout), or HAI principles like transparency, observability,
controllability.

e Cognitive Walkthroughs and Structured Expert Analyses

This class of methods involves expert evaluators systematically stepping through specific user
tasks or scenarios to assess whether a system supports effective and intuitive interaction.
Unlike heuristic evaluations, which focus on general interface principles, cognitive
walkthroughs and task analyses emphasize task-specific reasoning by simulating the user’s
problem-solving process at each step. Experts examine whether users will know what to do,
whether they can do it, and whether they can interpret the system’s response (Cooke, 1994:
Mahatody et al., 2010).

Cognitive walkthroughs are particularly well-suited for early prototypes and for identifying
issues in learnability, action sequencing, and feedback clarity. They typically require more
preparation, including defined user goals and action sequences, and benefit from
multidisciplinary teams familiar with the domain and the user population (Mahatody et al.,
2010).
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Other structured expert methods, such as GOMS (Goals, Operators, Methods, and Selection
rules) (John & Kieras, 1996) analysis or pluralistic walkthroughs (Hollingsed & Novick, 2007),
extend this approach by introducing predictive models of user behaviour or collaborative
multi-stakeholder evaluations. These methods are resource-intensive but offer rich
diagnostic value, particularly when empirical user testing is constrained.

e Instructor or peer assessment

Often used in training or operational settings (e.g., Evidence-Based Training), instructors or
peers assess a participant’s performance using defined competency frameworks (e.g., Crew
Resource Management, workload management, decision making), behavioural markers or
grading rubrics, or annotated video or live observation tools (see section 3.4.2) (O’Connor et
al., 2008: Salas et al., 1999). This method is valuable for both formative feedback and
summative evaluation. In HAT contexts, peer video can also surface concerns about trust,
clarity of roles, or perceived fairness of automation decisions.

General considerations for this family of methods include the importance of calibration, since multiple
raters must agree on criteria and interpretations to avoid inconsistency. Therefore, these methods
work best when combined with structured observation or system logs for triangulation. Since these
methods are subject to interpersonal or organizational biases, data anonymization can help ensure
validity of the results.

3.5 Selection Criteria and Dimensions of Interest

In order to select the metrics of interest, we first need to identify the phenomena and states we wish
to assess. SafeTeam project proposes to draw on existing literature to identify these dimensions of
interest, particularly regarding the constraints and difficulties generated by the introduction of more
or less autonomous virtual assistants.

3.5.1 OOTL associated issues

When a new automation solution is introduced into a system, or when there is an increase in the
autonomy of automated systems, developers often assume that adding “automation” is a simple
substitution of a machine activity for human activity (substitution myth, see Woods & Tinapple, 1999).
However, the fascination regarding the possibilities afforded by technology often obscures the fact
that automation also produced new loads and difficulties for the humans responsible for operating,
troubleshooting, and managing high-consequence systems. Whatever the merits of any automation
technology are, automation does not merely supplant human activity but also transforms the nature
of human work.

Empirical data on the relationship of people and technology suggest that traditional automation has
many negative performance and safety consequences associated with it stemming from the human
out-of-the-loop (OOTL) performance problem (see Endsley & Kiris, 1995; Kaber & Endsley, 1997).
Particularly, automation is frequently accompanied by a decrease in operator performance, such as a
reduced sensitivity to important signals (Billings, 1991; Wiener, 1988), excessive or insufficient trust
in system ability (Parasuraman et al., 1993), and loss of operator situation awareness (Carmody &
Gluckman, 1993; Endsley, 1996; Endsley & Kiris, 1995). As a major consequence, the OOTL
performance problem leaves operators of automated systems unable to take over manual operations
in the case of automation failure. Particularly, the OOTL performance problem causes a set of
difficulties including a longer latency to determine what has failed, to decide if an intervention is
necessary and to find the adequate course of action (Billings, 1991).
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Different issues are associated to this OOTL phenomenon:
e Situation Awareness issue

The lack of operator involvement in supervisory modes and passive information processing
contributes to critical human cognitive errors, specifically the loss of operator situation awareness
(SA), to which many safety incidents have been attributed. Particularly, OOTL phenomenon is
characterized by both a failure to detect and to understand the problem and by difficulties to find
appropriate solutions.

Failure to detect — It is now clear that humans are less aware of changes in the environmental or system
state when those changes are under the control of another agent (automation or human; Endsley &
Kiris, 1995; Parasuraman & Riley, 1997; Wickens, 1994; Metzger & Parasuraman, 2001). Several works
indicate a lack of operator awareness of automation failures and a decrease in detection of critical
system state changes when involving in automation supervision (for a review see Endsley & Kiris,
1995), and numerous incidents have been attributed to these difficulties in perception when operating
in an automated mode.

Failure to understand - In addition to delays in detecting that a problem has occurred necessitating
intervention, operators may meet difficulties to develop sufficient understanding of the situation and
to overcome the problem. “Automation surprises” are a direct instantiation of these difficulties in
automation understanding and take-over situations (see Sarter, Woods & Billings, 1997). Automation
surprise is said to occur when the automation behaves in a manner different than its operator expects
(see Palmer, 1999). When interacting with automated systems, human operators will develop a
mental model of the system’s behavior and use it to anticipate how the machine will behave in the
near future. However, with increase in system complexity (for example, the multiplication of the
number of possible *modes”), it is sometimes difficult for the human operator to track the activities
of their automated partners. The result can be situations where the operator is surprised by the
behavior of the automation asking questions like, what is it doing now, why did it do that, or what is
it going to do next (Wiener, 1989). These “automation surprises” are particularly well documented
(e.g., Degani & Heymann, 2000; Palmer, 1995; Sarter & Woods, 1994, 1995; Moll van Charante et al.,
1993) and have been listed as one of the major causes of incidents (see for example FAA, 1995).

e Vigilance issue

When the inclusion of automation appears critical to increase safety and efficiency, such highly
automated environments will require maintaining high levels of vigilance for a long period of time.
Interestingly, research on vigilance has shown that humans are poorly suited for monitoring roles
(Davies & Parasuraman, 1982; Parasuraman, 1987; Wiener, 1987). Indeed, we observe a decrease of
human operator vigilance in case of interaction with highly automated systems (see for example
O’Hanlon, 1981; Wiener, 1988; Strauch, 2002). Nowadays, there is some consensus that vigilance
decrement is one the major index of OOTL phenomenon and insufficient monitoring and checking of
automated functions is one important behavioral aspect of the OOTL performance problem, (i.e.
information on the status of the automated functions is sampled less often than necessary) (see for
example Billings, 1991; Kaber & Endsely, 1997).

Interestingly, alteration of vigilance process could also generate, or increase, out of the loop situation,
particularly Mind Wandering (MW) episodes.MW is the human mind’s propensity to generate
thoughts unrelated to the task at hand (Christoff, 2012; Stawarczyk et al., 2011). Studies point MW as
a possible cause of many driving accidents (Galera et al., 2012), plane crashes (Casner and Schooler,
2013) and medical errors (van Charante et al., 1993). Recently, a link between automation and MW
has been proposed (Casner & Schooler, 2014; Gouraud, Delorme, & Berberian, 2018). Recently, a link
between automation and MW has been proposed. Casner and Schooler (2014) conducted a study
where pilots were instructed to handle the approach — flight phase before landing — in a simulator by
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following beacons at altitudes given by the ATCo. Probes inquired about their state of mind at
predetermined times while pilots had to report their position to the ATCo. They reported that when
using higher levels of automation, pilots were more prone to MW when they had no interaction with
the system and when the previous call had been made. Time saved by automation, which should
normally be used to plan the flight, was instead fulfilled by task-unrelated thoughts.

e Complacency / Trust issue

Complacency defines the cognitive orientation toward high reliability automation, particularly prior
to the first time it has failed in the user’'s experience (Rovira, McGarry & Parasuraman, 2007).
Complacency is perceived as a strategy to optimize performances operators working with systems
that fail once every ten million hours of use tend to underestimate the possibility of automation errors
and over-trust the system (Parasuraman & Wickens, 2008). Because they have the feeling that the
system does not require them to work efficiently, they instinctively lower cognitive resources
allocated to monitoring (Morrison, Cohen, & Gluckman, 1993). This overreliance on automation
represents an important aspect of misuse that can result from several form of human error, including
decision biases and failure of monitoring (Wiener, 1988; Parasuraman, Molloy, & Singh, 1993;
Parasuraman & Riley, 1997; Singh, Molloy, & Parasuraman, 1993).

This phenomenon is directly linked to the concept of trust. The concept of trust in automation
describes to what extent an operator relies on an automatic control system. The role of trust in
human-automation interaction has been the focus of much research over the past decade (e.g.,
Dzindolet, Peterson, Pomranky, Pierce, & Beck, 2003; Madhavan & Wiegmann, 2007; for a
comprehensive review, see Lee & See, 2004). It has been proved that high levels of trust in automation
that is not perfectly reliable lead to overreliance and failure to monitor the “raw” information sources
providing input to automation — so-called complacency. Conversely, if automation is underestimated
it may limit its use, restricting its benefits (Lee & See, 2004). In certain conditions, system opacity
appears to limit the trust in automation and generate such disuse.

3.5.2 Beyond the OOTL phenomenon

This is a new relation between the human and the machine, as an automatic machine may be said to
be intelligent. The new form of interaction differs dramatically from the traditional interaction of the
human with the tools and devices that possess no intelligence, in which all sensing and control were
done by the human operator. Adding or expanding the machine’s role changes the cooperative
architecture, changing the human’s role, often in profound ways (Sarter, Woods, & Billings, 1997). The
introduction of automation into complex systems has led to a redistribution of operational control
between human operators and computerized automated systems. Moreover, as pointed out by
Flemisch et al. (2012), in addition to control, authority, ability and responsibility are also modified
according to the level of automation within the human—-machine system.

e Sense of control and acceptability issue

Often neglected, the psychosocial aspects of automation may prove to be the most important of all,
because they influence the basic attitudes of the operator toward his task, and we would presume, his
motivation, adaptability, and responsiveness. The significance of these questions lies not in the
spectra of massive unemployment due to assembly line automation, but in the effects of automation
on the changing role of human operators.

Improving acceptance of new technology and systems by human operators is an important area of

concern to equipment suppliers (see Horberry, Stevens, & Regan, 2014). To be acceptable, new

technology must be reliable, efficient and useful. Although performance and preference are often

positively correlated (Nielsen & Levy 1994), high levels of performance do not guarantee user

acceptability. Further, it appears that users indeed tend to reject systems that enhance their
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performance in favor of systems that are less efficient but more acceptable. For instance, Inagaki et
al. (2007) showed that drivers preferred collision warnings than automated control, which tends to be
misunderstood; even when automated control provided led to better performances. As pointed out
by Shneiderman and Plaisant, (2004), users “strongly desire the sense that they are in charge of the
system and that the system responds to their actions”. Increase in automation has the potential to
seriously threaten this sense of control.

Recently, the concept of agency has been applied to the HCl domain (McEneaney, 2013; Berberian et
al., 2012; 2013; Obhi & Hall, 2011; Limerick, Coyle & Moore, 2014). The term ‘sense of agency’, or sense
of control, is the subjective awareness of initiating, executing, and controlling one's own volitional
actions in the world (Jeannerod, 2003). This form of self-awareness is important not only for motor
control but also for social interactions, the ascription of causal responsibility and serves as a key
motivational force for human behaviour. Unfortunately, it has been repeatedly shown that the
progress in automation technology can alter the development of this sense of agency (Berberian,
2019). What makes our understanding of agency especially relevant is the fact that a decrease in
agency could generate critical concern regarding both automation acceptability and operator
behavior. As pointed out by Baron (1988), “the major human factors concern of pilots in regard to
introduction of automation is that, in some circumstances, operations with such aids may leave the
critical question, who is in control now, the human or the machine?”. This ambiguity about who is in
control could impact user acceptance, but also user engagement in the task.

e Coordination issue

This new form of interaction also introduces new coordination demands and the emergence of new
classes of issues due to failures in the human-machine relationship. Automated tools are increasingly
being modelled as ‘partners’ rather than as tools (Klein et al. 2004). These partners should support or
assist the human in performing functions that may either be difficult or even impossible for the
operator to perform without the assistance of a ‘knowledgeable team-mate’. This entails new
coordination demands for the operator — they must ensure that their own actions and those of the
automated agent are synchronized and consistent. Designing to support this type of coordination is
a post-condition of more capable, more autonomous automated systems. Critically, it appears
necessary to design a system able to give feedback about its state and the course of its action to
support cooperation. Unfortunately, as previously discussed with the concept of “Automation
Surprise”, such cooperation is difficult to obtain. The result can be automation which leaves its human
partners perplexed, asking Wiener’s (1989) now familiar questions: what is it doing? Why is it doing
that? What is it going to do next?

These new coordination demands generate the emergence of new classes of issues due to failures in
the human-machine coordination. Amongst others, system opacity appears as a first concern. one of
the foundations of any type of cooperative work is a shared representation of the problem situation
(e.g. Grosz, 1981; McCarthy et al., 1991). In human-human cooperative work, a common finding is
that people continually work to build and maintain a “common ground” of understanding to support
coordination of their problem-solving efforts (e.g. Patterson et al., 1999). We can break the concept
of a shared representation into two basic (although interdependent) parts: (1) a shared representation
of the problem state, and (2) representations of the activities of other agents. The first part, shared
representation of the problem situation, means that the agents need to maintain a common
understanding of the nature of the problem to be solved. The second part, shared representation of
other agents’ activities, involves access to information about what other agents are working on, which
solution strategies they are pursuing, why they chose a particular strategy, the status of their efforts
(e.g. are they having difficulties? Why? How long will they be occupied?), and their intentions about
what to do next. When we consider automated team members, this information no longer comes for
free — we have to actively design representations to generate the shared understandings which are
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needed to support cooperative work. Nowadays, this work for "OPENING UP THE BLACK BOX"
remains unsatisfactory.

In this context, the main problem with automation is not the presence of automation, but rather its
inappropriate design (Norman, 1990). Where designers really need guidance today is how to support
the coordination between people and automation, not only in foreseeable standard situations, but
also during novel, unexpected circumstances. Understanding the actions of the automated system is
central for human operators. However, as previously discussed with the concept of “Automation
Surprise”, such understanding is difficult to obtain. The lack of system predictability is certainly a
central point in understanding OOTL phenomenon and associated difficulties of takeover
(Christoffersen & Woods, 2000; Dekker & Woods, 2002; Klein, Woods, Bradshaw, Hoffman, &
Feltovich, 2004; Norman, 1990). With the progress of technology, current man-made complex
systems tend to develop cascades and runaway chains of automatic reactions that decrease, or even
eliminate predictability and cause outsized and unpredicted events (Taleb, 2012). This is what we may
call “system opacity”: the difficulty for a human operator to have a clear idea of the system'’s
intentions and to predict the sequence of events that will occur. In that sense, the main problem with
automation is not the automation per se, but rather its inappropriate design within the human-
computer interaction (Norman, 1990). For example, previous studies have showed that ATCo
performance can be compromised when ATCos do not have ready access to aircraft intent
information (Castafno & Parasuraman, 1999; Galster, Duley, Masalonis, & Parasuraman, 2001). This
situation is likely to generate difficulties in anticipating/understanding the actions of my artificial
partner, thereby generating difficulties in terms of coordination, acceptability and feeling of control.
In this sense, the intelligibility of artificial systems (i.e., producing clear, predictable and
understandable behavior) is a major challenge for the systems engineering community.

3.5.3 Selected dimensions

Considering the different issues revealed, we have decided to select a set of measures that make
available:
e The quality of cooperation, in particular team performance, Cooperativeness | Coordination,
Fluency, Shared Situation Awareness,
e The attitude toward the artificial partner, in particular, Trust, Usability, Acceptability,
Controllability,
e The state of the operator regarding OOTL phenomenon, in particular Vigilance/Mind
Wandering, Feeling of Agency, Situation Awareness, Complacency.

Attitude
towards the Operator
artificial State

partner

Team performance Trust Vigilance/Mind Wandering
Cooperativeness / Coordination Usability Feeling of Agency 00TL
Fluency Acceptability Situation Awareness

Shared Situation Awareness Controllability Complacency

Workload and Cognitive load
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In addition to the relevance for the dimensions of interest, we have considered ease of use as a central
element in our selection of metrics, as the methodology must be accessible to people who are not
experts in HF.
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4 Selected metrics

Based on an extensive literature review relating to studies about human-machine collaboration in
operations (see Appendix A) and regarding the dimensions of interest previously identified, we have
selected a set of metrics allowing to assess: Human-Machine Collaboration (HMC), Attitude towards
the artificial partner (Attitude), and the Operator State (State). For each metric, various
characteristics are provided:

The name and definition of the metric;

The dimension addressed by this metric: either HMC, Attitude or State;

The type of metric as described in Section 3: either self-report, behavioural or physiological,
but also either subjective or objective;

The expertise required to administer this metric: on three levels namely novice, intermediate
or expert;

The time required to administer and compute this metric: on three levels namely low,
medium, or high;

The material necessary to administer this metric;

The moment when it should be administered: either before the task, during the task, after
each trial, or after the task;

Commentaries and limitations regarding this metric.

4.1 Team performance

General domain addressed: Team Performance

Team performance is in this case specifically related to taskwork, meaning how the human-
artificial agent team performs at completing the assigned tasks.

Name: Response Time
Response Time (RT) is the “time duration between the presentation of stimulus to a human
and the human’s response”.

Dimension Type of metric: Expertise required: Time
addressed: Novice requirements:
Behavioral
State Objective Low
Attitude
Material Commentary/limitations:
necessary:
It requires a specific action from the operator, associated to an event.
Time-accurate It can be interpreted only in time-pressured evaluations.
response It can be computed at the trial level or averaged separately for
recording experimental conditions to be compared.
system.
When:
After each trial
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Name: Total task time

Total Task Time (TTT) refers to the total elapsed time between the beginning of a task (a
specific work, a trial, etc.) and its end. It includes all activities (breaks, interruptions, etc.)
within that time frame. It has to be dissociated from the time on Task (ToT) which refers to
the active part of the TTT.

Dimension Type of metric: Expertise required: Time
addressed: Behavioral Novice requirements:
Objective
HMC Low
Attitude
Material Commentary/limitations:
necessary:
It requires to define what the “task” is. It needs start and stop elements
Timer which are associated to a specific meaning and requirement.
When:
After the task

Name: Accuracy [Hit/Error rate]

The accuracy is defined in signal detection tasks as “the proportion of trials in which a signal is
present and the participant correctly responds that it is.” It is defined in %.
The hit rate [error rate] is computed as the ratio between the number of correctly identified
[missed] events over the total number of presented events * 100

Dimension Type of metric: Expertise required: Time

addressed: Novice requirements:
Behavioral

State Objective Low

Material Commentary/limitations:

necessary:
This measure refers to a wide number of concepts and has low specificity

None towards them. The conclusions drawn from it can be limited. It can be
computed to compare experimental conditions. It also requires the

When: dichotomic identification of a correct and incorrect answer. When
combined with other measures in the signal detection theory framework it

After the task

allows to compute additional metrics such as the sensitivity (d”) or bias (c)
towards a specific response.

Name: Task Completion Rate
Task completion rate corresponds to the ratio between the number of completed trials and
the total number of trials * 100.

Dimension Type of metric: Expertise required: Time

addressed: Novice requirements:
Behavioral

Attitude Objective Low

Material Commentary/limitations:

necessary:
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None This measure refers to a wide number of concepts and has low specificity
towards them. The conclusions drawn from it can be limited.
When: The task completion rate also requires defining thresholds satisfactory for
After the task success and failure according to the task and context.

4.2 Mental Models

General domain addressed: Mental Models

The term “Mental models” refers to an individual’s internal representation or understanding of

how something works or how different elements relate to each other within a system. It's a
cognitive framework that people construct to help them interpret and interact with the world
around them.

Name: Automation Awareness

Automation awareness refers to the quality of the representation that an individual has of its
artificial partner mental model. It is measured after each trial using six statements, each
rated with a 5-point Likert scale of strongly agree to strongly disagree.

Dimension Type of metric: Expertise required: Time

addressed: requirements:

State Self-report Novice Medium
Subjective

Material Commentary/limitations:

necessary: An average value of automation awareness can be obtained by averaging

Paper/pencil the values of all items.

When: Questions need to be adapted regarding the action performed by the

After each trial Artificial Agent (AA) in each use case.

Name: Mental model Formal Framework

This metric’s objective is to define a framework to detain a set of questions relevant to a
specific system, supported by 3 definitions regarding: subject overlap, compatibility, and
agreement.

A model M is a mental model that is shared to the extent @ by agents Ay and Az with

respect to a set of questions Q iff there is a mental model My of A1 and Mz of As, both

with respect to Q, such that:
1.80(M, My, Q) = 1,andSO(M, M, Q) = 1

2A(M: Ml:Q) > 97 andA(M, Mg, Q) >0

Dimension Type of metric: Expertise required: Time
addressed: Self-report requirements:
State Subjective Expert High
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Material

necessary:
Paper/pencil

When:
After each task

Commentary/limitations:

This doesn’t directly define the questions to be proposed to participants,
it requires to adapt this set of questions to the situation and tasks. It is
thus highly adaptable to various scenarios.

The framework also allows to define Shared Mental Models (SMM) in a
specific situation. Still, a complete questionnaire cannot be proposed, but
a methodology to detain a suiting set of questions. The model is a mental
model in the mind of an agent, sharedness is defined with respect to a
relevant set of questions.

Name: Situation Awareness General Assessment Technique

The SAGAT is addressed during full simulations where the experimenter freezes the
environment and probes the participant either orally, via pencil/paper or on a tablet
togvaluate their current perception of the situation before the simulation resumes. Queries
concern either the environment or the system state and relate to Level 1 (perception), 2
(comprehension) or 3 (projection) of the SA model.

Dimension Type of metric: Expertise required: Time

addressed: Expert requirements:

State Probing High
Subjective

Material Commentary/limitations:

necessary: This evaluation requires subject matter experts to identify relevant

Simulation

environment,
Paper/pencil or
tablet

When:
After each task

elements in the environment or the system state. Scoring needs to be
addressed regarding a specific time-point and situation. Scoring some
queries may be provided by subject matter experts with perfect
knowledge of the situation at the time of the freeze. SAGAT scores are
normally expressed as percent correct for each query, based on
operationally relevant tolerance bands. Many researchers have varied
from this recommended approach, instead combining the scores on all
SAGAT queries into a combined overall score, or into three combined
scores that represent Level 1, 2, and 3 SA. This evaluation requires a
highly controllable simulation.

Name: Task reflection

For this retrospection task, participants describing their reasoning after conducting the task
by i) replaying the events, ii) identifying decision points and reflecting on them; and iii) self-
explaining their own understanding of the task.

Dimension Type of metric: Expertise required: Time
addressed: Expert requirements:
State Self-report High

Subjective
Material Commentary/limitations:
necessary: An empirically derived expression of the content or the ebbs and flows
Camera that compose a user's mental model must contribute to the evaluation of
recording of mental model goodness (i.e., correctness, comprehensiveness,
situation or coherence, and usefulness). This evaluation needs to be performed in
simulation complementarity with other situation awareness and mental model




environment,
audio recording
system

When:
After each task

evaluation tasks. This evaluation requires subject matter experts to be
able to address the precise events and issues related to the task
performed by the participant. It is also time consuming and requires a
highly controllable simulation.

4.3 Trust

General domain addressed: Trust

Trust has been associated to many definitions and models according to the domain of
application. Trust influence how willing a user is to rely on a machine agent, system, or

automation to perform a task, based on the user’s perception of the machine’s ability, integrity,
and predictability. Judgement to which the user can rely on the automated system to achieve his
or her goals under conditions of uncertainty.

Name: Human Computer Trust Questionnaire

This questionnaire consists of 5 constructs (perceived reliability, perceived technical
competence, perceived understandability, faith, and personal attachment) with 5
corresponding items. The participants answer on a Likert scale providing their level of
agreement with each item.

Dimension Type of metric: Expertise required: Time

addressed: requirements:
Self-report Intermediate

Attitude Subjective Medium

Material Commentary/limitations:

necessary: The average of the 25 items represents overall trust.

Paper/pencil It can be computed for experimental conditions separately to compare
them.

When: Quite long to administrate regarding other trust questionnaire.

After each task

Name: Trust scale

This scale is based on 6 items for which participants have to provide their agreement on a 5-
point Likert scale going from 1. strongly disagree to 5. strongly agree. It evaluates, regarding
a specific situation the current trust state.

Dimension Type of metric: Expertise required: Time
addressed: requirements:
Attitude Self-report Novice Low

Subjective
Material Commentary/limitations:
necessary: This scale is very easy and quick to implement. It can be used to compare
Paper/pencil various versions of a similar agent. There are several modified versions of
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When:
After each task

this scale with, for example, 4 items for collaborative Human-Human-
Agent triads questioning both Trust in the agent and Trust in the
teammate.

It can be computed for experimental conditions separately to compare
them.

Name: Propensity to trust machine scale

This scale is based on 6 items for which participants have to provide their agreement on a 5-
point Likert scale going from 1. strongly disagree to 5. strongly agree. It provides a general
evaluation of trust as a trait for each participant.

Dimension Type of metric: Expertise required: Time
addressed: requirements:
Attitude Self-report Novice Low

Subjective
Material Commentary/limitations:
necessary: This scale allows to consider inter-participants variations. Propensity to
Paper/pencil trust and trust (see trust scale) are two separated, but related, constructs.
When:
Before the task

Name: Dynamic reporting of trust
This measure corresponds to one simple question allowing to evaluate trust towards the
artificial agent on a o (I don't trust the artificial agent at all) to 100 (I trust the artificial agent

completely) scale. It allows to measure trust either after a trial or as probing (dynamic).
Dimension Type of metric: Expertise required: Time
addressed: requirements:
Attitude Self-report Novice Low
Subjective
Material Commentary/limitations:
necessary: This measure has been used as quick and frequent (even continuous)
None measure. If performed frequently, it requires an interruption of the task
even if it is quick and minimal. It near real-time measure possibility allows
When: to be used for the consideration of the temporal specificity and evolution

After each trial
or during the
task

of trust.

It can be averaged for experimental conditions separately to compare
them, or interpreted over time.

Name: XAl trust scale

The XAl Trust Scale asks users directly whether they are confident in the XAl system,
whether the XAl system is predictable, reliable, efficient, and believable. It is an 8 items list
to which participants are asked to respond on a 5-point Likert scale form "l agree strongly” to
"l disagree strongly”.

Dimension
addressed:
Attitude

Type of metric: Expertise required: Time
Self-report Novice requirements:
Subjective Low
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Material Commentary/limitations:

necessary: This scale is focused specifically on the end-user's trust in machine-

Paper/pencil generated explanations. The scale is initially oriented towards tools but
can be adapted to the evaluation of artificial agents.

When: It can be computed for experimental conditions separately to compare

After eachtask | systems or conditions.

Name: Acceptation-Compliance / rejection rate of artificial agent’s suggestion

This measure is computed as the percentage of the artificial agent’s suggestion accepted or
rejected. The compliance and agreement rate corresponds to the number of times the
participant follows recommendations given by the system or positively responds to system
alarms. They can be computed over a few trials, or a whole task.

Dimension Type of metric: Expertise required: Time

addressed: Behavioral Novice requirements:

Attitude Objective Low

Material Commentary/limitations:

necessary: This scale can be used to assess performance as well as trust. The valence

None of each recommendation in terms of rejection/acceptance needs to be
evaluated carefully. This measure could affect other trust metrics due to

When: lowered trust associated with wrong recommendations detection.

After eachtrial | Additionally, this measure is very sensitive to other variables such as

or after the task | workload or emotions.

Name: Intervention/Task delegation
This measure refers to the number of times the human agent intervenes [or oppositely
chooses to delegate] in the artificial agent’s task. In opposition with “reliance”.

Dimension Type of metric: Expertise required: Time

addressed: Behavioral Novice requirements:

Attitude Objective Low

Material Commentary/limitations:

necessary: This measure can be used to assess performance as well as trust.

None Additionally, this measure is very sensitive to other variables such as
workload or emotions.

When:

After the task

Name: Ocular metrics

Ocular metrics can be divided into two main types of measures: gaze-tracking measures and
pupillometry. Both can be the physiological expression of monitoring behaviour towards the
system. Specific measures such as monitoring frequency (glances), fixation frequency or
fixation duration have been associated to trust.

Dimension Type of metric: Expertise required: Time
addressed: Physiological Expert requirements:
Attitude Objective High
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Material Commentary/limitations:

necessary: Eye tracking measures have low specificity and must be measured in
Eye-tracker association with subjective and/or behavioural measures. Their quality

and precision also have an inverse relationship with the intrusiveness of
the eye tracking hardware. Additionally, eye-tracking measures are very
sensitive to the luminosity of the environment, which should be stable to
perform comparisons.

When:
During the task

Name: Decision/Verification time

Decision time refers to the time to make a decision, generally complying to a
recommendation. Verification time refers to the act of confirming the accuracy of a
teammate's actions or recommendations and may precede compliance, reliance, or
intervention. They can both be associated to trust.

Dimension Type of metric: Expertise required: Time

addressed: Behavioral Intermediate requirements:

Attitude Objective Medium

Material Commentary/limitations:

necessary: This measure is sensitive to extraneous variable (i.e., workload and risk

Timer level) that may not capture trust. It can also be biased give the balance
with the cost of said verification for the participant.

When:

After each trial

4.4 Fluency

General domain addressed: Fluency

Fluency in joint action is the quality existent when two agents perform together at high level of
coordination and adaptation, in particular when they practice a task repetitively, and are well

accustomed to the task and to each other. In simulation, anticipation has been shown to lead to
improved task efficiency and fluency, as well as a perceived commitment of a simulated robot to
the team and its contribution to the team’s fluency and success.

Name: Extended version of the fluency in Human-Robot interaction scale

This scale aims to shed light on different aspects of human-robot interaction to characterize
high-quality cooperation between the human and the robotic counterpart. This
psychometrically-validated measurement tool allows for repeated testing and improving the
understanding of HRI fluency and its perspectives.

Dimension Type of metric: Expertise required: Time
addressed: Self-report Intermediate requirements:
HMC Subjective Medium
Material Commentary/limitations:

necessary: This scale can be provided in its extended, or adjusted version. The
Paper/pencil extended version allows to address several sub-dimensions of fluency
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When: through trust, learning, shared goals, etc. These sub-dimensions can also
After the task be assessed individually. This scale can be adapted to wider autonomous
agents (not only robots) but some items must be modified.

4.5 Agency/Controllability

General domain addressed: Agency/controllability

Controllability refers to “how much a user is “in control” of the process. Controllability reflects to

what extent they can control the automation or alter its result to reach their goal, and how easily
and rapidly can this control be carried out.” Agency refers to the “experience of controlling one’s
own actions, and, through them, events in the outside world".

Name: Result controllability

Result controllability is measured as a 7-item scale to which participant must provide their
agreement on a 7-point Likert scale from “1. Strongly disagree” to “7. Strongly agree”. The
items address different sub-dimensions of controllability, namely: perceived accuracy,
perceived controllability, feeling of control, feeling of accomplishment, feeling of
responsibility, satisfaction and enjoyment.

Dimension Type of metric: Expertise required: Time
addressed: Self-report Novice requirements:
Attitude Subjective Low

Material Commentary/limitations:

necessary: This scale is focused primarily on the result and the outcomes. Moreover,
Paper/pencil it is mostly relevant when considering an artificial agent as a tool rather

than a partner. Additionally, this scale can be redundant with usability,

When:

acceptability and agent’s performance.
After each task

The results have to be considered individually for each item. They can be
computed for experimental conditions separately to compare systems or
conditions.

Name: Autonomous Agent Teammate-Likeness Scale - Perceived agentic capability of
the system

The perceived agentic capability scale refers to one of the 6 sub-dimensions of the
Autonomous Agent Teammate-Likeness Scale. It is the perception that the intelligent agent
as an autonomous agent, has some degree of decision-making latitude and an affordance,
ability, and authority for self-control. It is measured as a 7-item scale to which participants
provide their agreement on a 5-point Likert scale from “1. Strongly disagree” to “5. Strongly
agree”.

Dimension Type of metric: Expertise required: Time
addressed: Self-report Novice requirements:
State Subjective Low
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Material Commentary/limitations:

necessary: At the opposite of result controllability scale, it is mostly relevant when

Paper/pencil considering an artificial agent as a partner rather than a tool. It requires to
interact with artificial agent with high level of autonomy.

When:

After the task or

after each trial

Name: We-agency scale

This measure corresponds to one simple question allowing to evaluate to which teammate
(him or the artificial partner) the agent attributes the control over an outcome on a scale
from 1 (definitely the artificial partner) to g (definitely me). It allows to measure agency
either after a trial or as probing (dynamic). The question is: “Who produced the outcome of
the joint action?”

Dimension Type of metric: Expertise required: Time

addressed: Self-report Novice requirements:

State Subjective Low

Material Commentary/limitations:

necessary: The experimenter needs to ensure and be mindful about the use of the

Paper/pencil term responsible for, especially for populations who are required to be in
constant control. The prompt can be adapted if necessary.

When: Additionally it requires to consider a specific joint action and cannot be

Aftereachtrial | 1 \0ogired during system monitoring tasks.

4.6 Communication and coordination

General domain addressed: Communication and coordination

Communication concerns the transmission of information, which may be by verbal (oral or
written) or nonverbal means. Humans communicate to relate and exchange ideas, knowledge,
feelings, and experiences and for many other interpersonal and social purposes. In the
framework of human-system interaction, communication can be regarded as the process of at

least two entities “sharing” something, suggesting an act of “bringing together”.

Coordination refers to the capacity of various parts to function together. In human-system
interaction, it refers to the process of aligning the actions and interactions between humans and
machines to achieve common goals effectively. The key aspects of human-machine
coordination include turn-taking, communication, and the management of dependencies
between activities.

Name: Human-Autonomy Teaming assessment scale

This measure assesses to which extent the artificial agent supports four teaming skills
namely: communication, coordination, cooperation and cognition. It is an 8-item scale to
which participants have to provide their agreement on a 5-point Likert scale from “5.
Strongly agree” to “1. Strongly disagree”.

Pagel33



Dimension Type of metric: Expertise required: Time
addressed: Self-report Novice requirements:
HMC Subjective Medium
Material Commentary/limitations:

necessary: This measure can be redundant with controllability and usability scales.
Paper/pencil

When:

After each task

Name: Autonomous Agent Teammate-Likeness Scale - Richness of communication

The richness of communication scale refers to one of the 6 sub-dimensions of the
Autonomous Agent Teammate-Likeness Scale. It is the perception that the intelligent agent
communicates in a way that is relatively complex, sophisticated, clear, highly informative,
and interactive. It is measured as a 6-item scale to which participants provide their
agreement on a 5-point Likert scale from “Strongly disagree” to “Strongly agree”.

Dimension Type of metric: Expertise required: Time

addressed: Self-report Novice requirements:

HMC Subjective Low

Material Commentary/limitations:

necessary: Particularly relevant for consideration about the design of human system

Paper/pencil interaction. Could be both used when considering the artificial agent as a
partner or a tool.

When:

After each task

Name: Autonomous Agent Teammate-Likeness Scale - Synchronized mental model

The synchronized mental model scale refers to one of the 6 sub-dimensions of the
Autonomous Agent Teammate-Likeness Scale. It is the perception that the intelligent agent
behaves in a predictable manner and responds as expected such that respective actions and
reactions are synchronized, seamless, and natural. It is measured as a 5-item scale to which
participants provide their agreement on a 5-point Likert scale from “1. Strongly disagree” to
5. Strongly agree”.

Dimension Type of metric: | Expertise required: Time

addressed: Self-report Novice requirements:

HMC Subjective Low

Material Commentary/limitations:

necessary: This measure can be redundant with mental model questionnaires and

Paper/pencil assessments. It is highly relevant when performing joint task with
artificial partner but remains interesting for supervisory task.

When:

After each task
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4.7 Explanation satisfaction

General domain addressed: Explanation satisfaction

Satisfaction is a contextualized, a posteriori judgment of explanations. It is measured according
to key attributes, such as understandability, feeling of satisfaction, sufficiency of detail,
completeness, usefulness, accuracy or trustworthiness.

Name: Explanation Satisfaction Scale
It is measured as a 7-item scale to which participants provide their agreement on a 5-point
Likert scale from “Strongly disagree” to “Strongly agree”.

Dimension Type of metric: Expertise required: Time
addressed: Self-report Novice requirements:
HMC Subjective Low

Material Commentary/limitations:

necessary: This measure can be redundant with trust and communication scales.
Paper/pencil

When:

After each trial

Name: System Causability Scale (SCS)
SCS is measured as a 10-item scale to which participants provide their agreement on a 5-
point Likert scale from “1. Strongly disagree” to 5. Strongly agree”. It measures the quality
of the explanations provided by the system, their timing and their granularity.

Dimension Type of metric: Expertise required: Time

addressed: Self-report Novice requirements:

HMC Subjective Low

Material Commentary/limitations:

necessary: An overall value is computed as the sum of the 10 items divided by 5o.

Paper/pencil This measure can be redundant with shared mental models,
controllability and acceptability scales. The result can be computed for

When: experimental conditions separately to compare systems or conditions.

After the task
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4.8 Vigilance, Attention allocation

General domain addressed: Vigilance, Attention allocation

Attention refers to a state in which cognitive resources are focused on certain aspects of the
environment rather than on others and the central nervous system is in a state of readiness to
respond to stimuli. Research in this field has been devoted to discerning which factors influence
attention and to identify the underlying neural mechanisms. Past experience or conscious
perception, as well as qualities of stimuli in the environment, such as intensity, movement,

repetition, contrast, and novelty can impact attention. On the other hand, vigilance refers to a
state of extreme awareness and watchfulness directed by a person toward the environment,
often toward potential threats. In various contexts, vigilance tasks demand maximum
physiological and psychological attention and readiness to react, characterized by an ability to
attend and respond to stimulus changes for uninterrupted periods of time.

Name: Ocular metrics — Time on tool

Ocular metrics can be divided into two main types of measures: gaze-tracking measures and
pupillometry. Both can be the physiological expression of monitoring behaviour towards the
system. The raw eye movement is captured by the eye-tracking device with areas of interest
defined beforehand. Here, the analysis of raw eye movements or scan-paths focuses on
fixations (maintaining visual gaze within a specific area of the screen or regions of interest)
and saccades (rapid eye movements between fixations). Fixations are defined as relatively
stable positions of the eye, for at least 100ms, allowing information encoding. This requires a
classification algorithm to identify fixations (and implicitly the saccades between them) from
the raw scan-paths. A longer fixation time could be interpreted as a marker of the complexity
or the importance of a piece of information.

Dimension Type of metric: | Expertise required: Time

addressed: Physiological Intermediate requirements:

State Objective High

Material Commentary/limitations:

necessary: The specificity of ocular metrics can be very limited and requires other

Eye-tracking measures (performance, subjective) to be associated with. It is very

system sensitive to the environment and various task parameters. Analysis could
be highly time consuming.

When:

During or after

the task
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4.9 Workload and cognitive load

General domain addressed: Workload and cognitive load

The notion of workload is related to the cost for an operator to achieve a task in a given
environment. Workload can be defined as the effort invested by the human operator into task

performance; workload arises from the interaction between a particular task and the performer.
Workload refers to a hypothetical construct that represents the cost incurred by a human
operator to achieve a particular level of performance. Cognitive load, on the other hand refers to
the effort being used in the working memory.

Name: Instantaneous Self-Assessment of workload (ISA)

ISA involves participants self--rating their workload as a function of spare mental capacity
during a task (normally every two to five minutes) on a scale of 1 (low) to 5 (high). The
frequency and timing of the workload ratings should be determined beforehand by the
analyst. It is crucial that the provision of a workload rating is as unintrusive to the
participant’s primary task performance as possible.

Dimension Type of metric: Expertise required: Time

addressed: Self-report Novice requirements:

State Subjective Low

Material Commentary/limitations:

necessary: In order for the results to be valid, the participants should have the same

Paper/pencil understanding of each level of the workload scale i.e. what level of
perceived workload constitutes a rating of 5 on the ISA workload scale

When: and what level constitutes a rating of 1. ISA is a very simplistic technique,

During the task

offering only a limited assessment of operator workload. To ensure
comprehensiveness, ISA is often used in conjunction with other
subjective techniques.

Name: NASA-Task Load indeX (NASA-TLX)

NASA Task Load Index (TLX) method assesses workload on a 6 dimensions 7-point scales. It
is a subjective, multidimensional assessment tool used to rate perceived workload in order to
assess a task, system, or other aspects of performance. NASA TLX should be used at the end
of the experiment / block of trials of the considered condition. Users require two separate
forms. The first form is a table of definitions for their reference throughout the process
(NASA-TLX Reference Sheet Definitions). The second form contains the actual survey items
(NASA Task Load Index Rating Scales).

Dimension Type of metric: Expertise required: Time
addressed: Self-report Intermediate requirements:
State Subjective High

Material Commentary/limitations:

necessary: Two versions (weighted or unweighted) can be administered to take into
Paper/pencil account the individual participants sensitivity to the various workload

sources as defined by the 6 subdimensions of the NASA-TLX. It is very
important that the definitions of the 6 subdimensions are interpreted
with the same meaning by all participants. In the non-weighted version,
the scores from every item are summed and then the sum is divided by 6

When:
After the task
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to obtain an overall score between o - 100. The weighted value is
computed as an overall weighted workload score for each respondent is
computed by multiplying each rating (between o and 100) by the weight
(between o and 5) given to the factor by that respondent. The sum of the
weighting ratings for each task is then divided by 15 (the sum of the
weights). The added value of this measure is the possibility to break down
workload into various sources, but some dimension could be difficult to
interpret.

4.10 Usability and acceptability

General domain addressed: Usability and acceptability

Acceptability refers to the extent to which a system is perceived by users as appropriate, useful,
usable, trustworthy and desirable. It influences their willingness to adopt and continue using the
system on long term. Several dimensions such as trust, safety and ease of use are known to be

fundamental for user acceptance. On the other hand, usability refers to “the extent to which a
system can be used by specified users to achieve specified goals effectively, efficiently and with
satisfaction in a specified context of use.” Usability has multiple components and is traditionally
associated with five attributes: Learnability, Efficiency, Memorability, Errors, Satisfaction.

Name: System Usability Scale (SUS)

The SUS yields a single number representing a composite measure of the overall usability of
the system being studied. It takes into account two factors of a system: its usability and its
learnability. It is a 10-item scale in which participants provide their agreement on a 5-point
Likert scale going from “1. Strongly disagree” to “5. Strongly agree”. This scale should be
used prior to any debriefing with the participant

Dimension Type of metric: Expertise required: Time

addressed: Self-report Novice requirements:

Attitude Subjective Low

Material Commentary/limitations:

necessary: Allitems are not presented with the same valence. To calculate the score,

Paper/pencil one should add the score of each item. Foritems 1, 3, 5, 7and g, the
individual score is the grade received minus 1. For items 2, 4, 6, 8 and 10,

When: the contribution is 5 minus the grade received. The sum of all scores is

After the task

then multiplied by 2.5, and this is how the total value of SUS is obtained.
After the scoring and the calculation of the score, it is possible to classify
the evaluated system.

Name: Acceptability scale

The acceptability scale is a tool for studying acceptance of new technological equipment. It is
simple and consists of g-item where users provide their evaluation on 5-point rating scales.
These items load on two scales, a scale denoting the usefulness of the system, and a scale
designating satisfaction.
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Dimension Type of metric: Expertise required: Time
addressed: Self-report Novice requirements:
Attitude Subjective Medium
Material Commentary/limitations:
necessary: Items 1, 2, 4, 5, 7 are scored on a scale from [+2] to [-2] whilst items 3, 6, 8
Paper/pencil are mirrored and should be scored from [-2] to [+2]. The Usefulness scale
is the average of item 1, 3, 5, 7and 9 (so it has a range from -2 to +2)
When: whilst the Satisfying scale is the average of items 2, 4, 6, and 8. Here,
After the task

acceptance is measured by direct attitudes towards a system. Practical
aspects of the system are reflected in the usefulness score, while the
pleasantness is mirrored in the satisfying score.

Name: User acceptance of automation scale

The user acceptance scale is a 7-item scale to which users provide their feedback on a 7-point
Likert scale from “1. Totally disagree” to 7. Totally agree”. This scale evaluates the average
acceptability of a system or tool by a user. It can be adapted to both systems and artificial

agents.

Dimension Type of metric: Expertise required: Time

addressed: Self-report Novice requirements:

Attitude Subjective Medium

Material Commentary/limitations:

necessary: It is adapted from a longer 26-item scale and selects specifically trust,

Paper/pencil safety and perceived ease of use related items which are fundamental to
acceptance measure. This scale can share redundancies with trust,

When: performance and usability measures.

After the task
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5 Conclusions

This deliverable provides guidance for people interested in quantifying and characterising the impact
of the introduction of artificial agents on human operators. To guide this choice, this deliverable
proposes a general process to select adequate metrics depending on the artificial agent evaluated but
also depending on the expertise of the evaluators and the material available. This framework first
defines relevant dimension of interest when considering the introduction of an artificial partner. For
each dimension of interest identified, the deliverable proposes a set of metrics. The deliverable also
specifies, for each metric, the expertise required to administer this metric, the time required to
administer and/or compute this metric, the material necessary to administer this metric and the
moment of the moment when it should be administered. Commentaries and limitations regarding
each metric are added.

Not all measures are intended to be used simultaneously. For each assessment campaign, it will be
necessary to identify the most relevant dimensions of interest, particularly with regard to the risks
identified beforehand (see D2.1). It will then be a matter of choosing the most relevant metrics for the
dimensions of interest according to the measurement resources available, the nature of the task, the
nature of the interaction between the crew and the virtual assistants, the time available and the
experimenters' own skills. The measures presented here therefore constitute a pool of metrics from
which experimenters can pick and choose to best quantify the impact of the tool being evaluated for
the use case under study.

Two limitations of the evaluation framework have been identified here. The first one is the fact that
many measures (self-report, questionnaires, behavioural or physiological) reported in the literature
are tested in lab-based environments where independent variables are more or less easy to identify
and to set up. In these cases, biases and confounding variables are also easier to control for. In more
ecological or operational contexts, tasks are more complex and individual factors variables or
processes taking part into these tasks are more difficult to isolate. Thus, confounding variables can
render the interpretations of variations in measures trickier. Similarly, as processes engaged in the
realisation of such operational tasks are intricated, some measures or variables tend to interaction
with each other. As an example, the XAl trust scale or pupillometry are two very different measures
(subjective vs. objective, self-report vs. physiological) but both of them have been shown to be
modulated by trust as well as workload. Showing the very high entanglement of these two concepts
as variables. We have tried as much as possible to display the known correlations in the tables
reporting measures. Unfortunately, unknown entanglements can still appear.

The second limitation relates to the systems considered in the evaluation framework of the SafeTeam
project. Several dimensions identified in the metric selection process refer to several processes that
may arise during collaboration, cooperation and interaction. These processes are often based on what
we know from human-human interaction. Dimensions such as agency, trust, explainability or
communication may require the system to have more intelligent or agentic abilities. Yet, the systems
evaluated in SafeTeam lack these abilities. They can be considered more as Level 1 Al (as described in
the EASA concept paper on Al) and are providing assistance to human operators’ decision making,
compared to Level 2 Al which refers to cooperative and collaborative Al. Still, several measures are
either relevant for both (e.g., workload, mental models, team performance) or can be adapted to
decision making tools, as well as artificial agents. This limit was also adressed whenever necessary in
Tables providing measures for Human-Autonomy Teaming evaluation. In the SafeTeam evaluations
though, we have had to select only those appropriate according to the type of system.
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