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Abstract 
In work package 3.2 of the SafeTeam project, human factors are investigated to safely integrate AI into 
the workflow of modern-day airliners. More specifically, we aim to develop an unstable approach 
prediction tool to increase the pilots’ situational awareness during the critical phases of an approach. 
This document represents the first of two reports that document the development process of such a 
tool. This first report conducts a thorough literature review and describes the methods we intend to 
use. Further, the use case is defined, and several models are developed to gain an in-depth 
understanding of the current system and how changes to this system may impact positively and 
negatively the work in a cockpit during the approach. The work presented here is the foundation of 
developing an AI decision support tool that will be implemented and tested in a simulator study later 
in the project. 
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Introduction 

In the SafeTeam project, human factors related to AI integration are elaborated through several 
practical applications, in which we aim to progress the safe introduction of automation in the form of 
intelligent assistance to humans. In the present deliverable, we lay the foundation for developing a 
stabilized approach assistant, based on a machine learning unstable approach prediction tool, that is 
intended to increase the pilot's situational awareness during the approach phase of a flight. 

A share of 43% of fatal accidents occur during approach and landing, while these flight phases account 
for only 16% of total flight time [1]. In the years 2015 to 2019, IATA lists 292 flight accidents for turbine-
powered aircraft with a certificated Maximum Takeoff Weight (MTOW) of at least 5700 kg. In 17 % of 
these accidents, the IATA ACTG identified a UA as a contributing factor. In the major accident category, 
namely runway and taxiway excursions, UAs were identified as contributing to 22 % of absolute 
occurrences [2] 

To identify risks and avoid accidents before they occur, operators' flight safety teams routinely analyze 
flight data recordings stored in the onboard Quick Access Recorder (QAR). Recorded flight parameters 
include accelerations, speeds, altitudes, coordinates, attitudes, configurations, control surface 
deflections, system statuses, and many more. Flight data analysis, also called Flight Data Monitoring 
(FDM) or Flight Operations Quality Assurance (FOQA), aims to detect exceedance events in examined 
recordings. Exceedance events occur when flight parameters exceed their corresponding predefined 
thresholds such that the safe operation of a flight is not maintained [3]. 

Based on QAR data, several machine-learning applications have been developed to predict unstable 
approaches [4] [5] [6]. Their actual implementation into the operational environment ,however is not 
covered by literature to this extent. 

This deliverable provides a case study definition that will enable a practical case study for the stabilized 
approach digital assistant, one of the three investigated case studies for the safe teaming of humans 
and Ai in aviation. The focus of this document is the documentation of the following aspects: 

• Operational: Expected use (by who, when, how), user challenges to overcome (environmental, 
performance, under-capacity, safety) 

• Technological: Current maturity level, data availability, targeted level of autonomy, AI 
performance concepts (e.g., explainability, accuracy, recall, and bias-variance trade-off) 

• Human factors: distribution of tasks and responsibilities among operators and technology, 
human-machine interface upgrades for safe implementation, human technology safe teaming 
to reduce workload. 

Based on the results of SafeClouds.eu, which demonstrated the technical feasibility of machine-
learning-based unstable approach predictions, this document will guide the necessary developments 
that need to be implemented in work package 4.2, the Human-machine Collaboration in Destabilized 
Approaches. Therefore, this document develops: 

• a list of required functionalities for this digital assistant by incorporating the requirements of 
users and relevant stakeholders, with the goal of evolving this assistant as an automatized 
detector/predictor of unstable approaches for the cockpit 

• a use case definition by identifying novel data sources that could improve its precision, along 
with a data collection plan that studies the availability of those data sets.  

• an evaluation of how well the available AI models for go-around predictions fulfill user 
requirements in operational use. 

https://safeclouds.eu/
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• human factors-based design of the assistant interface to present the information to the crew 
in a safe manner, avoiding information overload and defining the appropriate task distribution 
between humans and machines according to the envisioned autonomy level. 

The structure of the deliverable is as follows. First, we provide a literature overview of existing 
machine-learning-based unstable approach predictions, which is followed up by a description of the 
unstable-approach prediction developed in the H2020 project SafeClouds.eu. This model serves as the 
basis for developing an initial Concept of Operations for the stabilized approach digital assistant case 
study. In section 2, we summarize the methodology applied for developing the initial Concept of 
Operation, a combination of parts of the SafeTEAM Framework, which will be presented in detail in 
Deliverable 2.1, and parts of EASA's guidance on machine learning applications in aviation. Finally, the 
Use Case definition is presented in section 3, which includes the following: 

• a description of the approach phase relevant to the case study 

• a description of how to integrate the machine learning-based component in the approach 
phase 

• an initial set of requirements that will guide the implementation phase of task 4.2. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwizppjVlOj_AhWESPEDHf9eBWsQFnoECAoQAQ&url=https%3A%2F%2Fwww.easa.europa.eu%2Fen%2Fdownloads%2F137631%2Fen&usg=AOvVaw2UM4LeK_FE6dbodSfO3pJ_&opi=89978449
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1 Literature Review 

Before defining the use case and case study for task 3.2, we provide an overview of the work that has 
been done in machine learning regarding the prediction of unstable approaches. Therefore, we first 
present results from a literature review and follow up, with a summary of the relevant results from the 
SafeClouds.eu project, which serves as an asset for the SafeTEAM project. 

1.1 Review of Machine Learning-Based Unstable Approach 
Predictions 

Over the past decade, some research has been performed on predicting unstable approaches or go-
arounds. Machine-learning-based unstable approach prediction is at the heart of this case study's 
concept. A brief overview of the existing research is provided in this section. The integration of the 
unstable approach predictors into the operations needs to be covered more in the literature. 

Early work on machine-learning-based unstable approach predictors was performed in the work of 
Wang [4]. The motivation to study Unstable Approach Predictors is to provide lead time to the flight 
crew to adjust an approach and avoid potentially unstable approaches and consequently go-arounds 
as one significant knock-on effect. Based on 28 days of surveillance flight track data for approaches on 
Newark International Airport Runway 22L, a logistic regression model is trained to nowcast the 
likelihood of the approach stability, given the flight's performance situation at 10NM, 6NM, and 3NM 
from the runway threshold. The approach stability is evaluated for two intervals, first between 1000ft 
AGL and runway threshold and between 500ft AGL and runway threshold. 

The training and test data set was generated by splitting the overall 8158 approaches randomly into a 
training set containing 5000 approaches and a test set having 3185 approaches. 

According to Wang, 52.4% of the approaches satisfy the stabilization criteria from the 1000ft AGL to 
the runway threshold interval, and 82.3% meet the stabilization criteria from the 500ft AGL to the 
runway threshold. Compared with studies from the Flight Safety Foundation [7], which state an 
Unstable Approach rate of 3-5%, these numbers appear too high and raise questions about the applied 
stable approach criteria used in the labeling process of the data set or the missing imbalance of (un-) 
stable approaches in the data. 

In the initial publication [4], ten features were derived from the data set, including, e.g., Maximum 
Take-Off Weight (MTOW), groundspeed, descent rate, or deviation from the runway centerline. In a 
subsequent publication [8], the feature set was enlarged to 22 features, including weather 
information. While claims to improve the performance measures which is true, however, in only small 
gains, the reported performances and the ones used for comparisons could be more consistent, 
making a final judgment on the reported results difficult. The achieved precisions are summarized in  

Table 1 as follows: 

Table 1: ML Precision Results from [4] 

Prediction Location from Runway 
Threshold 

1000ft AGL Interval 500ft AGL Interval 

10NM 62,7% 40,0% 

6NM 76,0% 52,6% 

3NM 86,7% 53,0% 

 

https://safeteamproject.eu/
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The achieved recall rates from [4] are summarized in Table 2 as follows: 

Table 2: ML Recall Results from [4] 

Prediction Location from Runway 
Threshold 

1000ft AGL Interval 500ft AGL Interval 

10NM 45,8% 3,6% 

6NM 63,9% 16,5% 

3NM 76,2% 31,4% 

 

The conclusion stated, "This analysis shows the degree of accuracy that can be achieved using historical 
flight track data to nowcast stabilized approaches before reaching 1000’ AGL and 500’ AGL. Whether 
this is useful on the flight deck and how this “probabilistic” information could be integrated into 
“deterministic” flight deck procedures are open research questions." The presented results are an 
initial step in predicting unstable approaches. Due to the inconsistency between the two mentioned 
publications and the not imbalanced data set, the presented results are considered not sufficiently 
conclusive for this project. 

In [5], unstable approach predictions were tested based on a set of 79766 approaches from 79667 
recorded flights from Quick Acess Recorder data. The work is based on a detailed unstable approach 
labeling algorithm, an evolution of the algorithm developed in SafeClouds.eu. It takes into account the 
following: 

• speed difference between calibrated airspeed and target speed 

• altitude rate 

• ILS deviations 

• Flap Position 

• Gear Position 

• Power Setting 

with a decision height fixed at 1000 ft above runway threshold elevation, coming with the limiting 
assumption of only considering ILS approaches. The results of the labeling can be summarized as 
follows: 

• 3115 unstable approaches were detected in the data (3.91%) 

• 215 approaches performed were go-around (0.27%) 

• 97.43% of unstable approaches did not perform a go-around 

• 36.04% of go-arounds were detected to be unstable approaches 

which are well aligned with the numbers published by the flight safety foundation [7]. 

A set of features was extracted from the described data set for each approach. In a time interval of 45 
seconds before reaching the stabilization gate, the features were extracted every 5 seconds. For a time 
interval 80s before the time reaching the stabilization gate, standard deviations of the features 
indicated with a * were additionally extracted. 

Featire Categpry Features 

Aircraft Handling 

Standardized Speed Difference, Barometric Altitude (ARTE), Glideslope 
Deviation*, Localizer Deviation*, N1 Rotational Speed*, Ground Speed, 
Calibrated Airspeed, Altitude Rate*, Temporal Margin Speed, Difference 
Aircraft Track and Runway Bearing* 

https://cordis.europa.eu/project/id/724100
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Aircraft Configuration 
Flap Handle to Landing, Gear Position, Temporal Margin Flap Extension, 
Temporal Margin Flaps in Landing Configuration, Temporal Margin Gear 
extended 

Flight Static Information 
Time Flown, Captain Flying, Aircraft Mass, Aircraft Type, Number of previous 
GAs 

Weather On-Board ADIRS HWC, ADIRS CWC 

Weather METAR 
Wind Speed, Gusts, Visibility, Temperature, Dew Point, Local Pressure, 
Weather Phenomena 

 

A benchmark study for twelve predictors was performed based on the labeled feature data set. All 
predictors were trained to predict the stability of an approach 20 seconds before the stabilization gate. 
The best-performing model's result is illustrated in Figure 1. The precision-recall area under the curve 
(AUC) metric achieved is 0.608. 

 

Figure 1: ML Results from [5], summarized in a Precision Recall Curve 

Figure 2 illustrates the precision recall evaluation for different prediction horizons, from 5s to 40s. One 
can see, that with larger prediction horizons, the AUC value decreases, which meets the intuitive 
expectations. 
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Figure 2: Precision Recall Results from [5], for different prediction horizons 

 

Another interesting work has been done [9]. As this work covers Unstable Approaches in general 
aviation (GA), the labeling process differs from the works covering commercial aviation. The paper is 
motivated by the observation that unstable approaches pose a significant risk to general aviation. 
Therefore, the paper investigates a deep learning architecture called recurrent neural networks (RNNs) 
to develop a predictive warning system to reduce risks associated with UA in GA. 

The paper presents a data pipeline for labeling and feature engineering. For altitudes between 450 ft 
mean sea level (MSL) and 300 ft MSL, the following criteria were used: 

• an indicated airspeed of 79–94 kt, 

• a vertical speed of less than 1000 ft∕min, 

• pitch of −10 to 10 deg, 

• bank of −10 to 10 deg 

• engine 1 and engine 2 have a percentage power of less than 40%. 

For altitudes between 300 ft MSL and 150 ft MSL, the following criteria were used: 

• an indicated airspeed of 79–89 kt, 

• a vertical speed of less than 750 ft∕min, 

• pitch of −6 to 6 deg, 

• bank of−7 to 7 deg, 

• engine 1 and engine 2 have a percentage power of less than 35% 

Based on these criteria, a data set containing 22,512 unstable labeled approaches and 19,502 labeled 
as stable. As features used to train the ML solution, the following information is extracted from the 
raw data: 

• altitude in ft above MSL, 

• calibrated airspeed in kt, 
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• vertical speed in ft/min, 

• pitch angle in degrees, 

• bank angle in degrees, 

• engine 1/2 power in %. 

The achieved model performance is provided in Table 3. In the paper, only the precision and recall 
regarding the Unstable Approach Prediction are presented; the values for the SA class are computed 
from the numbers given. 

Table 3: Summary of ML Results from [9] 

Class Number of Approaches Precision Recall 

SA 19502 0.9007 0.7647 

UA 22512 0.7895 0.9128 

 

The share of unstable approaches is higher than 50%, which looks high, even for general aviation. 
Therefore, the problem of imbalanced data, especially encountered and addressed [5], must be more 
relevant for the predictor discussed in this paper. Also, the set of features is limited and only considers 
aircraft performance-related information but does not contain weather or airport-related information. 
The altitudes for the labeling are defined against MSL, which needs to be clarified for us since we would 
expect a definition against the runway threshold elevation (ARTE). Since Embry-Riddle Aeronautical 
University is involved, all approaches may have been performed at Dayton Beach Airport, which is 
close to the sea. Thus the MSL and ARTE can be considered identical. Overall the data set is more 
comparable to an ADS-B-generated data set than a data set generated from a commercial aviation 
FDM program, even though the temporal resolution is stated to be one second, which is considerably 
better than the average ADS-B temporal resolution. 

1.2 SafeClouds.eu Unstable Approach Prediction Summary 

In SafeClouds.eu, different case studies investigated data mining techniques to obtain predictive 
information on safety events [10]. The case study "Unstable approaches" (UA) investigated two 
machine learning solutions [6]. The study in SafeCloud.eu focused primarily on the technical feasibility 
and the underlying IT infrastructure necessary to develop the machine learning models. As these 
models serve as a starting point for further developing the stabilised approach case study, we present 
a detailed summary of the SafeClouds.eu results. 

For this, a series of data, mainly FDM (Flight Data Monitoring), were used, which can be seen in Table 
4 

Table 4: Data Sources from SafeClouds.eu 

Data category Source Data type Description 

FDM 
Airlines 
consortium 
member 

Binary file decoded into 
engineering values and 
stored in parquet 
format 

Contains static and dynamic information as 
recorded in the QAR device, such as 
barometric altitude, ground speed, radio 
altitude, etc. with meta information (e.g. 
airport ICAO codes). 

METAR 
Iowa State 
University 

Text files converted into 
parquet file 

Contains information about the weather 
situation at an airport. It includes wind, 
temperature, visibility, cloud ceilings, 
precipitation, etc. 
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Airport related 
information 

OurAirports 
website 

CSV files converted into 
parquet files for 
performance 

Contains airport information such as the 
airport ICAO code, its region, country, 
position, runways, navigation aids, etc. 

 

For the identification and labelling of these UA, a standard definition was developed by all the 
consortium stakeholders, establishing the limits and requirements of different flight variables to flag 
an approach as unstable or not. Table 5 explains the variables/requirements defined to be used in the 
labelling of UA. The implementation considered varying limits for approach speeds and ILS deviations 
(localizer and glide slope) based on different height intervals. The final criteria used for the labelling of 
UA can be found in Table 6. These criteria established three limits by severity (limHI, limMD, limLO) 
within a certain altitude range (altBeg_ft, altEnd_ft) for a specific approach type (IMC, VMC, CIR) that 
should be achieved for a minimum duration (tHI, tMD, tLO). Ultimately, UA were classified as high, 
medium, or low severity. The highest severity would be assigned if an UA obtains several severity 
levels. 

Table 5: Naming convention of UA Criteria 

ID Description ID Description 

vAppU1 
[kts] 

Upper limit on approach speed deviation for 
first height interval 

spBr [ft] 
height limits for the speed brake 
usage 

vAppU2 
[kts] 

Upper limit on approach speed deviation for 
second height interval 

gear [ft] height limits for gear extension 

vAppL1 
[kts] 

Lower limit on approach speed deviation for 
first height interval 

flap [ft] height limit for final flap setting 

vAppL2 
[kts] 

Lower limit on approach speed deviation for 
second height interval 

bAng1 
[deg] 

limit for bank angle for first 
height interval 

vertSp 
[ft/min] 

Limit on the vertical speed 
bAng2 
[deg] 

limit for bank angle for second 
height interval 

loc [dot] limit on localizer deviation 
fanSp [%] 

limit on minimum fan speed of 
the engine gs [dot] limit on glide slope deviation 

 

Table 6: Limits for unstable approach labeling 

 ID IMC VMC CIR altBeg_ft altEnd_ft limHI limMD limLO tHI tMD tLO deltaLim 

0 vAppU1 True False False 1000 500 30.0 20.0 15.0 3 3 3 NaN 

1 vAppU2 True True True 500 50 20.0 15.0 10.0 3 3 3 NaN 

2 vAppL1 True False False 1000 500 -10.0 -5.0 -2.0 3 3 3 NaN 

3 vAppL2 True True True 500 50 -5.0 -3.0 -1.0 3 3 3 NaN 

4 vertSp True True True 1000 50 -1200.0 -1100.0 -1000.0 3 3 3 NaN 

5 spBr True True True 2000 50 1000.0 1250.0 1500.0 0 0 0 500.0 

6 gear True True True 2000 50 1000.0 1250.0 1500.0 0 0 0 500.0 

7 flap True True False 2000 50 700.0 1000.0 1200.0 0 0 0 500.0 

8 flap False False True 1000 50 300.0 500.0 700.0 0 0 0 300.0 

9 bAng1 True False False 1000 500 20.0 17.0 15.0 0 0 0 NaN 

10 bAng2 True True False 500 50 15.0 12.0 10.0 0 0 0 NaN 

11 bAng2 False False True 300 50 15.0 12.0 10.0 0 0 0 NaN 
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12 loc True True False 1000 50 1.5 1.2 1.0 3 3 3 NaN 

13 loc False False True 300 50 1.5 1.2 1.0 3 3 3 NaN 

14 gs True True False 1000 50 1.5 1.2 1.0 3 3 3 NaN 

15 gs False False True 300 50 1.5 1.2 1.0 3 3 3 NaN 

16 fanSp True True True 1000 50 NaN NaN NaN 0 0 0 10.0 

 

Figure 3 illustrates the final workflow in the UA labeling. Before this, preliminary data processing was 
carried out, including actions barometric altitude correction, time point determination of the selected 
altitudes (e.g., 500ft and 1000ft), and approach information such as approach type, METAR 
information, approach speed, and the runway identifier. The vertical speed is first calculated using 
precomputed approach speed and the targeted runway's glide slope during the labeling process. Next, 
relevant indicators and limits are selected based on the approach type. ILS data (LOC and GS) validity 
is verified before entering the main loop for all indicators. The label functions for each indicator share 
the same interface.  



D3.2 Human Factors Design Principles for a Stabilised Approach Digital Assistant 

Page I 16 

 

Figure 3: Top-level control flow of the labeling module 

Figure 4 shows an overview of the feature engineering process. In this case the features for predictive 
learning were computed during the same stage as the labeling of UA events mainly due to the 
reduction of computational cost. The feature extraction works by calculating a list of selected features 
at each time point of interest. This includes current measurements and those taken over short intervals 
of 60 seconds. Static features are also calculated and merged, resulting in approximately 600 numerical 
values. It is essential to highlight that each landing attempt is handled separately.  
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Figure 4: Data processing and feature extraction pipeline 

Table 7 illustrates the primary defined features of the UA case study. They have been grouped 
according to their nature. All features are computed for each of the specified time points of interest. 
Features whose name ends in "_var" refer to calculating the variance of the relevant samples in the 
last 60 seconds. Other features such as "airspeed_mDs" (aircraft airspeed in meters per second) 
represent a static measurement at that very moment. METAR information and the 
"number_of_holdings" are supplied once for the whole approach since they will not change as 
frequently. For the "handling qualities" group of features, the aim was to establish how calm/turbulent 
the aircraft behaves in the approach phase based on the variation of altitude, heading, pitch, or roll 
values, among others. The "energy_level" feature is derived using the barometric altitude of the 
aircraft. For "adverse weather" features, wind direction, speed, and variation were also computed 
using the METAR weather reports. The aircraft control indicators in FDM were analyzed to determine 
the pilot who was flying. For example, if the left autopilot is on, and the left sidestick (in Airbus aircraft) 
or right transmitter is active, it's most likely the captain. If it's the opposite, it's likely the first officer. 
The pilot awareness features were defined through the duration and distance of the flight and the 
number of holding patterns performed. To calculate the number of holdings, we add up all turns in 
either direction and determine if the sum is divisible by 360° within a 5-minute tolerance (the standard 
holding pattern is 4 minutes, but some margin of error was added). Finally, "surrounding traffic" 
features at the target airport were defined due to the possible effects of the pressure/workload on the 
pilots and their approach quality. The density of air traffic control (ATC) communications via VHF 
activity was recorded to define this. For a more detailed examination of the approach situation, the 
radar track data from ALLFT+ shortly before landing was analyzed, focusing on the position and speed 
of the leading and trailing aircraft and measuring the distance and speed differences. For a more 
detailed definition of the features and the feature extraction process, see SafeClouds deliverables D4.2 
[10] and D4.3 [6]. 

Table 7: Primary Features, computed from the SafeClouds.eu Data Pipeline 

Feature Group Features 

handling quality 
pitch_rad_var, roll_rad_var, heading_rad_var, aoa_rad_var, p_radDs_var, 
q_radDs_var, r_radDs_var 

aircraft energy 
airspeed_mDs, energy_level, gndspeed_mDs, hbaro_m, hdot_mDs, mass_kg, 
rheight_m 
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adverse weather 
pstatic_NDm2, wind_dir_rad, wind_spd_mDs, wind_dir_rad_var, 
wind_spd_mDs_var, METAR (static) 

configuration flaps_rad 

crew coordination pilot_flying (includes autopilot status) 

pilot awareness distance_m, flight_time_s, utc_time_s, number_of_holdings 

surrounding traffic vhf_keying_var, airport throughput (ALLFT+) 

 

Looking into the data, it was observed that instability during the approach typically occurred around 
three nautical miles (NM) before the runway threshold. It was decided that for the prediction to be 
useful to the pilots, it should give them a range of reaction time between 30-90 seconds. To account 
for this, the prediction point needed to be established between 4 and 9 NM from the threshold, giving 
the pilot enough time to react. At a minimum, the pilot has 1 NM, or approximately 30 seconds of 
travel time, to prevent a UA from occurring. 

One of the main challenges encountered, and one to highlight, during the development of data-driven 
prediction tools is the imbalance in the data. UA incidents are rare events, occurring in only about 5% 
of all approaches. This leads to some issues in correctly predicting actual UA incidents, resulting in 
many cases of a high false positives rate. To address this issue, synthetic samples were generated using 
a technique known as SMOTE (Synthetic Minority Oversampling Technique) to support the model in 
learning features and address the lack of positively labeled flights (UA events). 

In the end, two different approaches were taken to predict UA events. On the one hand, Prediction 
case A used machine learning to perform precursor analysis (feature selection and combinations) and 
provide a binary classification model for predicting a flight's stability with enough time for the pilot to 
stabilize. On the other hand, Prediction Case B used deep learning techniques applied to the flight data 
management (FDM) time series using neural networks for binary classification of an impending 
unstable approach and to detect unseen hazards or anomalies in approach procedures. 

For prediction case A, one of the main objectives was to achieve maximum accuracy in predicting UA 
flights while minimizing false negatives, ensuring that the model's predictions do not result in false 
alarms and positively impact air traffic operations and increase throughput. The prediction point was 
established at 4 NM from the runway threshold, and features were sampled every 0.5 Nm from 4 to 9 
NM. An initial comparative study was conducted to test the initial performance of 7 different ML 
models. The ensemble-type model called LightGBM was obtained from these results as the most 
suitable model. This model was then re-trained and fine-tuned. The final performance metrics can be 
seen in  

Table 8. 

 

Table 8: Prediction case A: Model evaluation metrics 

Class Precision Recall Specificity F1-score 

Not UA 0.97 1.00 0.53 0.98 

UA 0.85 0.53 0.99 0.65 

Avg / Total 0.97 0.97 0.56 0.9 

AUC (ROC) 0.96 

AUC (PR) 0.77 
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The model’s results showed that it could accurately predict regular non-UA flights. However, the 
limited number of samples for UA flights led to it having some issues detecting certain types of UA. 
The model had a high precision score for the negative class (UA), providing a suitable prediction with 
high confidence levels of 1NM before the event. Despite this, the model was selective, having low 
recall due to the limited number of negative samples and, thus, difficulty recognizing specific unstable 
approaches. In addition to the predictions, this type of ML model also allowed for an analysis of the 
feature importance determined by the model. This allows us to look and try to understand why the 
model makes the predictions it does. Figure 5 presents feature importance, sorted by their impact on 
model prediction. The top feature identified by the model was "weather_altitude_hpa,” representing 
the destination airport's QNH. This is followed by airspeed at 4 NM, barometric altitude and airspeed 
with fully deployed flaps, and aircraft descent height over time at 4NM. Mainly features around 4NM 
to 5NM presented a higher significance level for UA prediction. 

 

 

Figure 5: Prediction Case A Feature Importance 
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For prediction case B the main objectives was the same: to achieve maximum accuracy in predicting 
UA flights while minimizing false negatives, ensuring that the model's predictions do not result in false 
alarms and positively impacting air traffic operations and increasing throughput. However, in this case 
the prediction would be given to a time series observation. This means that instead of having a static 
prediction point as in case A, we now have a dynamic prediction point. The condition set for this case 
study was that the final ML model developed should be able to provide a correct UA prediction at least 
30 to 60 seconds prior to the event. A LSTM (Long short-term memory) neural network was used which 
is a type of recurrent neural network (RNN) mainly used on sequential or time series data. These kinds 
of models are capable of automatically extracting features from past events and LSTMs are specifically 
known for their ability to extract both long and short term features. The final performance metrics for 
the trained LSTM can be seen in Table 9. 

Table 9: Prediction Case B: Model Evaluation Metrics 

Class Precision Recall Specificity F1-score 

SA 1.00 0.94 0.97 0 

UA 0.77 0.98 0.87 1 

Avg / Total 0.97 0.97 0.56 0.9 

micro AVG 0.95 0.95 0.95 micro AVG 

macro 
AVG 

0.88 0.97 0.92 macro AVG 

weighted 
AVG 

0.96 0.95 0.95 weighted AVG 

 

The model performance showed a low precision level implying that some non-UA observations in the 
approach phase are being identified as potentially Unstable Approach (UA). One reason could be that 
these are situations in which these approaches present very similar conditions to UA ones but may not 
result in a UA as the pilot may have taken corrective action within the seconds between the prediction 
point and the actual UA (reaction offset). On the other hand, the recall metric shows high reliability in 
predicting a UA, correctly identifying most of them, indicating that the neural network effectively 
learned the conditions preceding a UA. For this case study, the feature importance was also analyzed, 
highlighting as main features the calibrated airspeed, the ground speed, the relative humidity from 
METAR, the flaps position, and the barometric altitude. Figure 6 presents features important for case 
B. 
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One key lesson learned from the Safeclouds project is the importance of explainability in the context 
of safety applications. The significance of comprehending machine learning models' inner workings to 
cultivate trust and acceptance among end-users, particularly within safety-critical domains, was 
emphasized. A preliminary assessment of explainability was carried out using techniques such as 
feature importance analysis and partial dependence plots. While this initial assessment provided 
valuable information, it is clear that current practices could further improve the explainability of the 
models. The field of explainable artificial intelligence (XAI) has evolved rapidly, offering innovative 
methods such as rule extraction, counterfactual explanations, and model diagnostic techniques such 
as LIME and SHAP. Some of these techniques have already been successfully applied in other projects 
such as SafeOPS [11], [12]. Incorporating these advanced techniques in future iterations of the ML 
models would deepen our understanding of the predictive factors behind unstable approaches, 
provide us with the opportunity to improve the pilot's situational awareness by providing more 
decision-useful information, and at the same time, reinforce the pilots' trust in the system's decision-
making process. 

Figure 6: Feature Importance Prediction Case B 
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Furthermore, another key lesson learned was the need from the beginning of the project to establish 
a clear definition of the problem and to establish through the collaboration of users and developers a 
set of valuable and realistic requirements for the ML model performance. Safety-critical applications 
like predicting unstable approaches may require overall accurate predictions and a thorough 
understanding of the precision-recall trade-off. The precision-recall tradeoff is crucial in AI/ML 
applications. Precision measures accurately identified positive instances, while recall gauges the ability 
to detect all positive instances. Achieving an optimal balance between precision and recall is crucial to 
uphold the reliability and safety of the system. This delicate equilibrium necessitates careful attention 
during the training process. Depending on specific requirements, the training can be optimized to 
prioritize either precision or recall. For example, if the objective is to minimize false alarms, placing a 
higher emphasis on precision is favorable. Conversely, if the aim is to prevent the omission of critical 
instances, a greater focus on recall is prioritized. Accomplishing the desired balance entails meticulous 
parameter tuning, metric selection, and adjustment of decision thresholds.  

Finally, it is worth mentioning that the SafeClouds project achieved a Technology Readiness Level (TRL) 
4: technology validated in the lab. TRL4 is described as following the successful "proof-of-concept" 
work: basic technological elements must be integrated to establish that the different parts will work 
together to achieve concept-enabling performance levels for a component and/or breadboard. This 
validation must be developed to support the previously formulated concept and should also be 
consistent with the requirements of potential system applications. The validation could be composed 
of ad hoc discrete components in a laboratory. On the one hand, laboratory validation was carried out 
to validate the FDM decoding and assess whether the errors found in the case studies were due to the 
recording systems or our own decoding configuration. For this purpose, samples decoded by the 
airlines were used. On the other hand, validation was carried out to assess if labeling flights as 
(un)stable followed the designed rules and that the designed rules corresponded to the airlines' best 
practices. To this end, we verified that the criteria were correctly applied and identified possible risks 
in the process and their mitigations. 

 

1.3 Cockpit Design Principles 

Cockpit design philosophy and HMI best practice principles were gathered and customized for use in 
the stabilized approach digital assistant design. Sources for this information include literature as [13], 
[14], and [15], discussions with leading experts in human factors and cockpit design, information 
presented in robotics system design classes, and discussions with professional airline pilots. 

Cockpit design philosophy and HMI best practice principles were gathered and customized for use in 
the stabilized approach digital assistant design. Sources for this information include discussions with 
leading experts in human factors and cockpit design, information presented in relevant lecture classes, 
various research publications, and discussions with professional airline pilots. 

These statements establish a basis for system expectations, which will be developed later into system 
requirements. 

Classic HMI Design Principles 

1. Clear and Intuitive: 

a. Information provided by the assistant should be easy to understand and interpret. 

b. Displays should provide clear, well-organized, and uncluttered information. 

i. Information should be visible in all lighting conditions, including bright sunlight 
and dim cabin lighting. 
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c. aural cues should be easy to hear in expected cockpit environments. 

d. Haptic cues should be easily distinguished from other cues and the nominal 
conditions of the expected cockpit environment. 

2. User-Centered design: 

a. The HMI should consider the pilot's workflow, information needs, and cognitive 
capabilities during the approach phase. The HMI should be easy to learn and use. 

b. The HMI should follow established industry standards and be consistent with other 
avionics systems to ensure clarity and usability. 

c. The HMI should offer customization settings and preferences to suit individual 
preferences and requirements (such as alternate formats for visual items, aural alert 
volume adjustments, and override modes). 

d. Elements of the HMI requiring touch should be easily reachable (such as to alert 
acknowledgment or overrides) 

3. Real-time feedback: 

a. The HMI should provide real-time feedback to the pilot regarding the digital 
assistant's status and any necessary corrective actions. 

b. The HMI should provide feedback to the pilot regarding changes towards an unstable 
approach 

c. The HMI may also provide feedback to the pilot regarding improving approach 
conditions (i.e., regaining a stable approach) 

4. Alerts and Warnings: 

a. The HMI should provide alerts to the pilot (e.g., warnings, cautions, & advisories, 
"WCAs") to signal deviations from the planned approach characteristics (e.g., glide 
path, airspeed, altitude, flight path) 

b. The HMI should also suggest corrective actions to regain the desired approach profile 

c. HMI alerts and messages should be clear, concise, and timely 

i. Visual, aural, and haptic alerts related to the unstable approach digital 
assistant should be easy to understand and distinguish from other 
information in the cockpit 

d. Existing cockpit system schemes should prioritize the UA digital assistant alerts and 
warnings 

i. Colors, volume levels, and other prioritization characteristics of alerts should 
be appropriate given the severity and urgency of the situation 

5. Cognitive Workload: 

a. The digital assistant's HMI should not increase the overall cognitive workload of the 
pilot when active. 

b. The HMI design should minimize the pilot's cognitive load by presenting information 
logically and intuitively and reducing the number of steps required to complete tasks. 

6. Integration with aircraft systems: 

a. The UA digital assistant's HMI should be integrated into existing avionics systems to 
enable seamless communication and coordinated actions between the UA digital 
assistant and the aircraft. 

b. The HMI design should ensure independence from and prevent interference with 
critical aircraft systems. 
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c. The UA digital assistant should ensure that higher-priority information is clearly 
visible and audible at all times. 

7. Minimalism: 

a. The UA digital assistant HMI should aim to minimize the information given to the 
pilot(s) at any time 

b. The HMI design should aim to minimize any changes to the cockpit experience during 
an approach  

8. Reliability: 

a. The digital assistant design should meet levels of robustness and reliability expected 
for similar cockpit assistant systems (e.g., ROPS)   

b. The digital assistant design should include fail-safes and backup routines to ensure 
safe and reliable operation in case of errors or malfunctions. 

c. The HMI design should include system status messages to alert the pilot to a 
degraded UA digital assistant situation. 

9. Training and documentation: 

a. The UA digital assistant HMI should be well-documented in training materials and 
manuals, including descriptions of its operations, capabilities, and limitations. 

AI-Based Items: 

1. Explainability: 

a. The UA digital assistant should be designed such that post-flight explanations of HMI 
behavior (e.g., messages, tones) can be generated. 

b. Post-flight explanations of HMI behavior should be understandable to the pilots and 
other interested parties without knowledge of artificial intelligence (AI) or machine 
learning (ML) principles. 

c. HMI behavior should be predictable and in accordance with information presented in 
the training materials and manuals. 

2. Transparency: 

a. The UA digital assistant should provide post-flight information describing the basis 
for in-flight alerts and recommendations (e.g., algorithms used, relevant data). 

b. The UA digital assistant should provide post-flight information describing relevant 
limitations and uncertainties of the models used. 

3. Confidence and uncertainty estimation: 

a. The digital assistant should calculate real-time confidence levels associated with HMI 
behavior. 

b. Confidence levels and uncertainty associated with HMI behavior should be stored in 
non-volatile memory to allow for post-flight analysis. 

c. Post-flight information published by the digital assistant should identify leading 
factors affecting levels of confidence or uncertainty for algorithms used throughout 
the flight. 

4. Dynamic adaptation: 

a. The digital assistant should automatically adjust visual, aural, and haptic elements to 
correspond to external factors (e.g., sunlight, higher vibrations, etc.). 

b. The digital assistant should be able to function correctly after overrides have been 
selected via the HMI. 
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c. The digital assistant should comply with overrides demanded by pilots via the HMI, 
eliminating the use of the selected elements in alert-generating algorithms. 

5. Collaborative decision-making: 

a. The HMI should support collaborative decision-making between the users and the 
digital assistant. 

i. The HMI should be designed according to user preferences. 

ii. The HMI should allow for in-flight user adjustments and overrides. 

6. Feedback and evaluation: 

a. The digital assistant should provide pilots with post-flight feedback and evaluation of 
HMI behavior and their interactions with the system 
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2 Methodology 

This deliverable aims to describe how ML-based algorithms for go-around predictions can be 
integrated into the operation. The literature review on ML algorithms in sections 1.1 and 1.2 
summarized what is feasible from a technical perspective. The main task of this deliverable is to 
investigate, together with the relevant stakeholders, a potential concept of operation and thereby 
collect an initial set of high-level user requirements, which will guide the integration of the ML 
algorithm in the research simulator, foreseen in task 4.2. Therefore, we base the methodology for this 
deliverable on two pillars. Work Package 2 investigates Novel Approaches to HF, safety, and resilience 
in automation in this project's scope. Its D2.1 Design principles for digital assistants and HF assessment 
methodology (work in progress, yet to be published) provide a framework that serves as one 
foundation of this deliverable. Additionally, we take into account the guidance material for AI from 
EASA. 

The regulation and certification of Artificial Intelligence in the aviation domain are currently under 
development and have yet to be made possible. In 2022, EASA published the EASA-AI-Roadmap, which 
provides guidelines for implementing Artificial Intelligence in aviation, thereby raising high-level 
objectives to be met for certification. The Roadmap has been complemented by two guidance 
documents, targeting Level1 and Level2 machine learning applications, defining Objectives and Means 
of Compliance for: 

• Trustworthiness analysis 

• Learning assurance 

• Explainability 

• Safety risk mitigation 

The following subsections briefly summarize both documents' relevant methods and objectives for 
defining the Stabilized Approach Digital Assistant use case. 

2.1 Human factors design principles for stable approach digital 
assistant 

Human factors are essential when developing new tools, primarily in a safety-critical environment such 
as an airliner's cockpit. The tool should be visible and draw the pilot's attention when needed, but in 
the meantime, it should not be distracting and overwhelming. Additionally, it must be integrated into 
existing workflows and the working environment of present-day airliners. We apply the human factors 
design principle framework to achieve these objectives, which will be documented in D2.1 of 
SafeTeam. 

Figure 8 summarizes the framework (still a work in progress) as it was available when working on this 
deliverable. Based on an initial idea, which for this case study was presented in the project proposal, 
the framework consists of three major steps: 

1. System Model – Modelling the current system: This step analyses the existing system and 
explains why the current system should be adapted or an additional system/feature should be 
integrated. This step should reflect the intended or expected effects of changing the existing 
system. Figure 7 illustrates the information the system model shall provide. 

2.  Allocation Model – Designing the future system: The overall idea of this step is to define a task 
allocation of the adapted/extended system, which maximizes the performance of the 
collaborative system. Based on the system analysis of Step 1, the adapted system is modeled. 
The focus is on how the introduced change ripples through the components of the existing 

https://research.innaxis.org/display/SafeTeam/D2.1+Design+principles+for+digital+assistants+and+HF+assessment+methodology
https://research.innaxis.org/display/SafeTeam/D2.1+Design+principles+for+digital+assistants+and+HF+assessment+methodology
https://www.easa.europa.eu/en/downloads/109668/en
https://www.easa.europa.eu/en/newsroom-and-events/news/easa-releases-its-concept-paper-first-usable-guidance-level-1-machine-0#group-easa-downloads
https://www.easa.europa.eu/en/document-library/general-publications/easa-artificial-intelligence-concept-paper-proposed-issue-2
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system. By comparing the current system's model with the adapted system's model, this step 
shall safeguard against potential hazards. The output of this step is a definition of what shall 
be implemented.  

3. Implementation – Supporting enabler for human-autonomy teaming: Having understood what 
to change, this step defines how the new functionalities shall be implemented. Having done 
the technical implementation, the output of this step provides the evaluation of the 
implementation against the hypotheses defined in Step 1. 

 

Figure 8: SafeTEAM Framework for Desing and Human Factors Assessment of Digital Assistants 

Figure 7: Information in the System 
Model and Allocation Model 
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2.1.1 Methods 

To accomplish the framework's steps, deliverable D2.1 proposes two methods, Hierarchical Task 
Analysis (HTA) and Tabular Task Analysis (TTA). By comparing the task analysis of the existing with the 
envisioned system, the risks of changing the system shall be understood, and ultimately, safety 
requirements for the new system design can be derived. 

Hierarchical Task Analysis 

Hierarchical Task Analysis (or HTA) is a method used to model activity. As a basis, implementing such 
a method requires the realization and analysis of interviews, allowing the collection of operational 
expertise from relevant stakeholders. An HTA describes and compares the pilots must perform to meet 
a predefined objective (Diaper and Stanton, 2003). The HTA method decomposes tasks into subtasks, 
considering the temporal relationships (sequential, parallel, or alternative) between subtasks and 
sometimes even the tools needed to accomplish the task and meet the objectives. 

HTA aims to analyze complex systems or processes by breaking them down into smaller, more 
manageable components. This involves creating a hierarchical structure of tasks, where tasks are 
recursively broken down into subtasks up to a level in which tasks are simple enough to be easily 
understood. 

Tabular Task Analysis 

The TTA is a tabular version of the HTA. It allows tracking of the tasks identified to change with the 
digital assistant's introduction. Risk analysis and risk mitigation strategies are developed for each task 
that is either changing or introducing new. Therefore, the TTA is the initial step to introducing 
Safety/Risk Assessment for the Digital assistant in a structural manner. 

2.1.2 Stakeholder and User Feedback 

The SafeTeam framework heavily depends on the feedback of the stakeholders and users of the 
envisioned developments. To incorporate their domain knowledge and expectations in the case study, 
six workshops with pilots and other airline personnel were organized during the work on task 3.2. 
Depending on the number of participants, we either conducted the workshops as semi-structured 
interviews (if the number of participants was three or fewer, which allowed protocolling discussions) 
or as a mix of presentations and questionnaire sessions to enable the documentation of feedback from 
a larger participant group. The D2.1 provides guidance material for both activities, which was used to 
prepare and organize the questions, such that the workshops provide the necessary feedback from the 
participants regarding the activities demanded in the SafeTeam framework, steps 1 and 2. In the 
following, we summarize the objectives and high-level topics of the two activities. A complete set of 
questions and the minutes of the workshops will be provided in Appendix. 

 

Figure 9: SafeTEAM Workshops for Stakeholder and User Feedback 

2.1.3 Semi-Structured Interviews 

The organization of the workshop included three phases: 
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• Preparation is explained in more detail in Table 10 

• Execution 

• Post-Processing, explained in more detail in Table 11 

After each workshop, we analyzed the results and included them in the presentations for the following 
workshops. We, however, did not present the findings at the beginning of the upcoming workshops 
but started with a general discussion to allow for fresh ideas. The output of the workshops is a set of 
user stories, which are the basis for the objectives, system boundaries, high-level functionalities, and 
HMI findings, presented in section 3.3.1. 

Table 10: Workshop Preparation 

Preparation Setting: Three workshops were performed in person, three workshops were performed 
online via Zoom. 

Four workshops (workshops 1, 2, 3, and 6) were scheduled for 2 hours, one 
workshop (4) was scheduled for one day and one workshop (5) was scheduled for 
1,5 days. 

Goal: The goal of the workshop was to get feedback from end-users and stakeholders, 
on how to integrate machine-learning-based unstable approach predictions, as 
developed in SafeClouds.eu and described in section 1.2, into the cockpit. Focus 
was put on: 

• expected benefits 

• expected negative effects 

• existing systems preventing unstable approaches 

• boundaries of the envisioned digital assistant 

Participants: The interviewer side participated with two persons. This allowed consistent 
documentation while keeping the workshop in flow. 

For the semi-structured interview, we organized workshops with one - three 
participants. 

Discussion 
Topics: 

In each workshop, we structured the Question into the categories: 

• General 

• Operation 

• HMI 

• Machine Learning 

Before each set of questions, a presentation introducing the workshop 
participants 

  

Table 11: Workshop Post-Processing 

Post 
Processing 

De-
Briefing 

After the workshops, the team discussed the interviews and checked the meeting 
minutes which were written during the workshop. 

 

User 
Stories 

The feedback/answers of the participants were reformulated in user stories and 
grouped into the categories: 

• Objectives 

• High-level functionalities / Operation 

• HMI 

• Machine Learning 
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In Appendix B Stakeholder and User Workshops/Interviews, each Workshop is 
documented and the user stories from each workshop are presented 

 

2.2 Regulatory Guidance for AI applications in aviation 

EASA's Concept Paper: First usable guidance for Level 1&2 machine learning applications [16] defines 
a framework for building trustworthy AI. It contains a set of objectives grouped into four categories, 
as illustrated in Figure 10. While the complete document is relevant for this project (especially when 
implementing and evaluating the case study in Work Package 4), the case study definition phase 
described in this document, especially the "Characterisation of AI" objectives, are of importance 

. 

2.2.1 Characterization of the AI application 

For the Characterization of the AI, EASA defines the following objectives, summarized in Table 12. 
Comparing EASA's goals with the framework proposed in D2.1 (specifically Step 2: allocation model), 
we find several thematical similarities in both approaches. Objectives, by definition, must be complied 
with. EASA, as a regulatory Agency, leaves the means of compliance to the developer. Thus, applying 
the proposed framework of D2.1 for defining this case study and evaluating if the results satisfy the 
EASA's objectives is an interesting side effect of task 3.2. Objective CO-04 is the most challenging and 
open objective. Producing a ConOPS is not foreseen per se in the SafeTEAM framework. However, a 
substantial overlap can be found when comparing the objectives of the SafeTEAM framework, 
especially the System Model and Allocation Model, with the EASA Guidance and, e.g., the outline of 
the US Justice Department for compiling a ConOPS. In our view, a detailed description of the System 
Model and Allocation Model, combined with a set of high-level requirements, satisfies the US Justice 
Department's guidance for a ConOPS, which can be found in Appendix A. 

 

Figure 10: EASA's Trustworthy AI Building Blocks [16] 

https://www.easa.europa.eu/en/downloads/137631/en
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Table 12: EASA's Objectives related to ConOPS [16] 

EASA Objective ID Objective 

Objective CO-01 
The applicant should identify the list of end users that are intended to interact with the 
AI-based system, together with their roles, their responsibilities, and their expected 
expertise (including assumptions made on the level of training, qualification, and skills). 

Objective CO-02 
For each end user, the applicant should identify which high-level tasks are intended to 
be performed in interaction with the AI-based system. 

Objective CO-03 
The applicant should determine the AI-based system taking into account domain-
specific definitions of 'system'. 

Objective CO-04 

The applicant should define and document the ConOps for the AI-based system, 
including the task allocation pattern between the end user(s) and the AI-based system. 
A focus should be put on the definition of the OD and on the capture of specific 
operational limitations and assumptions. 

Objective CO-05 
The applicant should document how end users' inputs are collected and accounted for 
in the development of the AI-based system. 
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3 Stabilized Approach Digital Assistant – 
Use Case Definition 

3.1 System Model 

This section describes the system model for the stabilized approach digital assistant case study. The 
system model describes the current approach phase of aircraft without the envisioned machine-
learning-based unstable approach prediction artifact/constituent. The system model contains 
information on the system: 

• boundaries 

• stakeholders 

• processes 

• tasks 

• agents 

• artifacts 
 
Figure 11 illustrates a schematic overview of the stabilized approach digital assistant's system model. 
The purpose of the system model is to provide a systematic description of what must be considered 
when enhancing the existing system with a new functionality/artifact (in our case, ML-based unstable 
approach prediction). For the stable approach digital assistant case study, an aircraft's approach phase 
is considered a system subject to change. In the following subsections, each level of the system model 
is described in more detail. 

 

Figure 11: System Model Components 
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The approach phase has several goals. Primarily, the approach phase shall prepare a safe landing. 
Unstable approaches are a precursor for increased risk during a landing and are a quantifiable Key 
Safety Indicator for airlines. Thus, avoiding unstable approaches or maximizing stable approaches is 
considered a primary goal of airlines. In case of unstable approaches, go-arounds shall be executed by 
the cockpit crew. Maximizing the ratio of go-arounds in case of unstable approaches is also a safety 
target for airlines. Optimizing time and fuel consumption during the approach phase are secondary 
goals that are, however, directly linked to the reduction of unstable approaches and, consequently, 
go-arounds. 

3.1.1 System Boundaries 

In this section, we define the (operational) system boundaries for the stabilized approach assistant in 
terms of a generalized workflow of the cockpit crew during approaches based on user stories NF.5 and 
NF.3. Figure 13 provides a summary of milestones during the approach. The management of the energy 
state of an aircraft starts at the descent point. The distance needed to dissipate energy largely depends 
on the cruise altitude. Usually, the descent is managed by the flight management computer to be as 
efficient as possible. Even though the chosen descent point can decide if an approach becomes 
unstable, it usually is during the final approach when the success of an approach is determined. 
Depending on the airport approach procedures, the final approach begins between 2000 ft AGL and 
4000 ft AGL followed by the Gear Extension and the Final Flap Setting. 

Table 13: List of Approach Milestones, highlighting which are within the System Boundaries 

Approach Significant 
Points 

Altitude Range Track Mileage Speed Range 

Start Descent Cruise Level FMS Descent Path (~100-
130 NM) 

Cruise Speed 

Start of Flap Config. 3500 - 4500 ft AAL 12 - 15 NM 200-220 kts IAS 

Intercept Glide Slope 2000-4000 ft AAL 6 - 11 NM 180 kts IAS 

Gear Extension 2000 ft AAL 6 NM 160 kts IAS 

Final Flap Setting 1200 - 1500 ft AAL 4 NM approach speed 

Stabilized 1000 ft AAL 3 NM approach speed 

 

Figure 12 illustrates the approach phase, beginning ~10NM from the runway threshold. The aircraft 
intercepts the glide slope from below. Furthermore, the figure shows the significant points of the 
approach phase, the final approach fix, and the 1000ft gate. Figure 12 and Table 13 are only generalized 
descriptions of an approach. Each runway has procedures that specify the approach. An example 
procedure is provided in the process section below.  
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Figure 12: Approach Phase: System Boundaries 

3.1.2 Stakeholders / Agents 

In workshops and from the consortium composition, we were in close contact with two relevant 
stakeholders: 

• Airline/Operator: is the most relevant stakeholder in this system model. They operate the 
aircraft fleet and define applicable procedures like stabilized approach criteria. Furthermore, 
they determine the pilot tasks in the approach phase to an extent, besides the aircraft 
manufacturers, via training. Additionally, the Flight Data Monitoring departments are involved 
in evaluating the safety of an approach. From the airline, the relevant agents are: 

o Pilots 
o FDM Experts 

• Regulatory Bodies: are involved in the procedure designs of airlines and air navigation service 
providers. 

Additional relevant stakeholders are: 

• Air navigation service providers (ANSPs): They operate/control the airspace according to 
procedures (relevant ones introduced below) agreed upon with the regulatory bodies. From 
the ANSP, the appropriate agents in the system are: 

o Air Traffic Controllers 
▪ Tower Controller 
▪ Approach Controller 

3.1.3 Processes / Procedures 

Various options exist for conducting an approach, depending on the available infrastructure and 
navigation aids at an airport. Besides an ILS Approach with vertical guidance (3D approach/precision 
approach) installed at most major airports and runways, there are also approaches without vertical 
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guidance (2D approach/non-precision approach) based on GPS, Localizer only, VOR, or NDB. These 2D 
approaches typically increase the workload for the cockpit crew. This could be seen as a further 
influencing factor on unstable approaches. 

3D Approaches 

EASA defines a three-dimensional approach as "... an instrument approach operation using both lateral 
and vertical navigation guidance." Unlike the more commonly known precision approach, three-
dimensional includes typical precision approaches such as ILS and LPV. Still, they also include 
approaches that only provide lateral guidance, but the flight management system provides vertical 
guidance. For example, take a VOR/DME approach, where the ground navigation aid only provides 
lateral guidance. However, the flight management system of modern aircraft can calculate appropriate 
vertical guidance.  

2D Approaches 

Two-dimensional approaches, on the other hand, are defined as "... instrument approach operation 
using lateral navigation guidance only". Therefore, the pilots perform the vertical guidance manually 
by crosschecking distance and altitude from approach charts. This significantly increases workload 
compared to a 3D approach. 

Missed Approach Procedure / Stabilized Approach Criteria 

A relevant procedure, which shall be considered in the allocation model, is the missed approach 
procedure. The standard missed approach procedure is defined within the approach procedure chart. 
One reason to initiate a missed approach procedure is an unstable approach. The exact definition of 
an unstable approach depends on the airline. Every airline has to define stabilized approach criteria in 
its Standard Operating Procedures (SOPs), and unstable approaches are those approaches that do not 
meet these criteria. Some guidelines exist on how to classify unstable approaches, e.g., from the Flight 
Safety Foundation (p44.) [7] or EASA's Data4Safety Project. However, as long as there are diverging 
SOPs, from our experience, one has to apply the airline-specific rules for classifying unstable 
approaches since these are what the pilots are trying to fulfill. Using general guidelines, especially 
when labeling data for a machine learning application, will result in either too high or too low unstable 
approach rates from an airline perspective. 

3.1.4 Task Analysis 

For the pilots as end-users in the identified system, Figure 13 illustrates their tasks in the boundaries 
defined above. The task analysis results from the workshops performed with pilots for task 3.2. It shall 
provide a general outline of the tasks that have to be fulfilled by both pilots throughout the final 
approach, independent of aircraft type or operator-specific procedures.  

 

https://flightsafety.org/wp-content/uploads/2017/03/Go-around-study_final.pdf
https://flightsafety.org/wp-content/uploads/2017/03/Go-around-study_final.pdf
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjmisaI_d3_AhWDPOwKHXahCiIQFnoECBAQAQ&url=https%3A%2F%2Fwww.easa.europa.eu%2Fen%2Fdownloads%2F136957%2Fen&usg=AOvVaw0Qm302l4qzMepjwz2mh0oM&opi=89978449
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Figure 13: Sequential Task Analysis of the Approach Phase 

Additionally, Figure 14 provides a Hierarchical Task Analysis of the approach phase system. This 
diagram groups the tasks according to the objective they aim to achieve. The hierarchical structure 
becomes ever more abstract from the bottom to the top.  
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Figure 14: Hierarchical Task Analysis of the Approach Phase 
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3.1.5 Artifacts 

The cockpit Human-Machine Interface (HMI) is the relevant artifact in this case study. The following 
sections discuss the current state of the art – first in terms of typical HMI elements present on 
commercial airliners and then in terms of existing digital assistants and related systems (e.g., ROPS, 
TAWS). While systems to prevent runway-related incidents already exist, there are notable differences 
between current capabilities and desired safety outcomes. The existing designs, their HMI 
functionality, and gaps in capabilities are described below.  

Human-Machine Interface (HMI)  

The HMI in this context comprises a combination of visual, aural, and haptic cues, as well as relevant 
links to the cockpit systems that would provide those cues to the flight crew. The diagram in Figure 15 
illustrates possibilities for HMI elements on a commercial airliner (similar to a Boeing 737 or Airbus 
A320) [17] [18]. While each airline and aircraft model varies in cockpit hardware, software, and design 
philosophies, common elements are plentiful and more than sufficient for designing a stabilized 
approach digital assistant. 

 

Figure 15: Stabilized Approach Digital Assistant HMI Options 

The goal of this diagram is to capture all the options possible for communicating alerts and information 
generated by the digital assistant. These options are organized based on sensory channels, the path of 
delivery, and then the type of information/indication/alert presented to the crew - followed by further 
detail, as needed (e.g., parameters of interest). In this diagram, the more complex or unconventional 
options were indicated with a dashed outline – to indicate that the research group considered these 
options but did not expect them to be popular among airlines and pilots. In this way, the diagram could 
be used to lead discussions about the digital assistant HMI design space without unpopular options 
distracting too much attention. 

During the approach phase of flight, the Primary Flight Display (PFD) and Navigation Display (ND) 
provide the most critical information, which is also the most relevant for maintaining stabilized 
approaches. While pilots follow a method of continuously scanning various instruments and the 
outside environment during flight, typically, the PFD serves as the main focal point for the pilot in 
command (PIC) during an approach. The copilot’s attention is usually divided between the ND, 
communication tasks, and configuration actions. Other relevant avionics components include the 
Electronic Centralized Aircraft Monitor (ECAM), System Display (SD), and warning panel. An image of 
the overall cockpit layout for a typical Airbus A320 aircraft is shown in Figure 16, and enlarged images 
of other key avionics components are shown in Figure 17. [19]  
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Figure 16: Example Airbus A320 Cockpit Layout. [18] 

  

Primary Flight Display (PFD) Navigation Display (ND) 

  

Electronic Centralized Aircraft Monitor (ECAM) System Display (SD) 

Figure 17. Relevant A320 Cockpit Avionics Components, Enlarged. [18] 
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Figure 18 shows the changing levels of workload typically seen throughout a flight.  Pilots are very busy 
during the approach phase of flight: they must perform a constant stream of actions to prepare for 
landing while simultaneously interpreting a large amount of quickly-changing information—including 
aircraft state parameters, directives from air traffic control, other air traffic, potential ground hazards, 
and weather. Any additional information or aids considered for this environment must be carefully 
balanced against the potential for cognitive overload, confusion, and distraction. Designs considered 
for the stabilized approach digital assistant must be carefully evaluated to determine their effects on 
factors such as pilot workload and situational awareness. [13] [19]   

 

Figure 18. Pilot Workload versus Phases of Flight [19] 

 

Runway End Overrun Warning (ROW) / Runway End Overrun Protection System (ROP) 

Runway excursions result from various factors during the approach and landing phase, such as an 
unstable approach due to too high energy and a slippery or contaminated runway. The runway end 
overrun warning/runway end overrun protection system (ROW/ROP) is a progression from the Brake-
to-Vacate (BTV) feature Airbus first developed for the Airbus A380 and was type certified by EASA in 
the year 2009 [4]. It aims to reduce the risk of a runway overrun by warning the crew during the final 
approach and during the roll-out of an imminent runway overrun risk. It is available on the Airbus A320, 
A330, A350, and A380 aircraft families. Its alerting function effectively guides and assists the flight 
crew in the go-around decision-making process during each approach. Additionally, it insists on 
applying all available deceleration means during rollout on the runway to avoid an imminent overrun.  
[20]. 

 

Figure 19: ROW/ROP illustration from [21] 
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The ROW/ROP algorithm computes eight times per second the stopping distance based on the 
“aircraft ś weight, ground speed, wind condition, landing configuration, and vertical/horizontal 
trajectory concerning the runway threshold.” It computes the actual landing distance for dry and wet 
runways and presents the warnings aurally and visually in the primary flight display (PFD). To identify 
the runway intended for landing, the system uses data taken from the terrain awareness and warning 
system (TAWS) database [21] [20]. 

 

Figure 20 ROW/ROP warning in an Artificial Horizon [21] 

SmartRunway and SmartLanding – Unstable Approach Monitor 

Honeywell produces an extension to the Extended Ground Proximity Warning System (EGPWS), the 
SmartRunway, and SmartLanding. Especially the Unstable Approach Monitor is relevant for this case 
study. After passing the stabilization gate, the system monitors the final approach and acts similarly to 
a Pilot Monitoring. The system produces an aural annunciation if the aircraft is: 

• too high 

• too fast 

• wrongly configured 

between 950ft and 450ft above runway elevation and an acoustic 'Unstable - Unstable' warning if the 
conditions still apply below 450ft above runway elevation. Additionally, the caution and warning are 
also displayed in the navigation display. Figure 21 illustrates the functionality of an excessive approach 
angle. For more details, we refer to Skybrary. 

https://www.skybrary.aero/sites/default/files/bookshelf/1974.pdf
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Figure 21: Illustration of Smart Runway Smart Landing Too High functionality [22] 

The inhibit functionality provided by the EGPWS system is essential for later discussions. Figure 22 
illustrates the GPWS panel in an aircraft. It allows setting the functionality inactive as a whole or by 
operating modes, in case the pilot wants to. 

 

Figure 22: GPWS Panel, with Options to inhibit (partial) functionalities. 

3.2 Allocation Model 

While the system model describes the state-of-the-art approach phase, the allocation model in this 
section works out the changes that ripple through the system model by introducing an additional 
component, the stabilized approach digital assistant, in the cockpit. The section will first provide a 
high-level description of the idea behind the stabilized approach digital assistant and thereafter work 
through the parts of the system model affected by the envisioned modifications. This deliverable 
focuses on the airline-specific aspects of the system model, especially those with a cockpit relation. 
This is in line with the overall scope of SafeTEAM, focusing on the teaming of digital assistants and 
human users. As far as the technology is developed at this stage, the technological aspects have been 
discussed in detail already in SafeClouds.eu. We will still modify the existing technology according to 
the user's needs. On the contrary, one purpose of this exercise is exactly to discover user expectations 
regarding, e.g., potential data sources or functionalities that are not yet implemented in the machine 
learning constituent developed in SafeClouds.eu, and collect a set of high-level requirements that will 
guide the implementation phase in task 4.2. 
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3.2.1 High-Level Description 

We aim to investigate a non-deterministic, ML-based assistance tool that provides timely information 
about the stability of the approach to pilots during the final approach phase. The basis for this 
assistance tool is the predictive functionality of the machine learning algorithms, described in section 
1. Review of Machine Learning Models from SafeClouds.eu. This section defines how the machine 
learning artifacts could best be implemented in the approach phase, as defined in the system model 
in section 1. System Model. Figure 23illustrates the additional ML artifact within the schematic 
illustration of the system model. At this research stage, the ML component shall be used as a decision 
support tool, as requested in the stakeholder workshops and documented in user story HL.P.1, 
providing the pilots with real-time information on unstabilized approach risks during the final approach 
phase. Therefore, the Stabilized Approach Digital Assistant groups into EASA's AI level 1B, according to 
Table 14. 

 

Table 14: EASA’s Levels of Automation according to [16] 

AI level Funciton allocated to the system 
to contribute to the high-level 
task 

Authority of the end user 

Level 1A Human augmentation Automation support to 
information acquisition 

Full 

Automation support to 
information analysis 

Full 

Level 1B Human assistance Automation support to decision-
making 

Full 

Level 2A Human-AI cooperation Overseen and overridable-
automatic decision 

Full 

Overseen and overridable 
automatic action implementation 

Full 

Level 2B Human-AI collaboration Overseen and overridable-
automatic decision 

Partial 

Overseen and overridable 
automatic action implementation 

Partial 

Level 3A Supervised advanced 
automation 

Supervised automatic decision Upon alerting 

Supervised automatic action 
implementation 

Upon alerting 

Level 3B Autonomous AI Non-supervised automatic 
decision 

Not applicable 

Non-supervised automatic action 
implementation 

Not applicable 

The parts of the system model directly affected by the Digital Assistant are encircled inFigure 23 by the 
orange ellipse. 
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Figure 23: Schematic illustration of the Allocation Model and which components are affected by the 
Digital Assistant 

From the airline perspective, the stabilized approach to a digital assistant can be subdivided into two 
parts, as illustrated in Figure 24: 

• On-Board or Online part, which is the actual implementation in the cockpit and 

• Off-Board or Offline part combines gathering data and training ML algorithms based on the 
data available to the Flight Data Monitoring (FDM) department. 

The offline part is summarized in section 1. Review of Machine Learning Models from SafeClouds.eu. 
The complete description of an IT infrastructure, setting up a data pipeline, model benchmarking, and 
training is described in cite D42 / D43 from SafeClouds.eu. This deliverable focuses on the online part, 
where the output Off-Board process must be integrated into the cockpit. To capture changing 
operations and train the model on rare events, not in previous data sets, the model needs to be 
prepared with new data at regular intervals. Therefore the offline part of the system requires access 
to the airlines’ data lake. The following graphic shows the information flow and provides an overview 
of all relevant interfaces. 
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Figure 24: Online and Offline part of the Digital Assistant 

Goals and Objectives 

Tools exist that detect unstable approaches and consequently request pilots to perform a go-around, 
as described in 1. System Model - Artifacts. However, the workshops performed within this project and 
the flight safety foundation's investigation on unstable approaches indicate that the ratio of go-
arounds in unstable approaches still needs to be higher. The idea of the stabilized approach digital 
assistant is to provide relevant yet predictive information regarding the stability of an approach to the 
pilot already before the stabilization gate. The primary purpose of the introduction of the ML-based 
unstable approach prediction algorithm in the aircraft cockpit is to provide a decision support tool that 
increases the pilot's situational awareness and hence decreases the number of unstable approaches 
(O.1). A further objective of a timely indication that an approach is (about to become) unstable, is the 
pilots' preparedness for a go-around. We expect the assistant to increase the number of go-arounds if 
an approach is not stabilized at the stabilization gate (usually at 1000 ft above aerodrome elevation) 
(O.3). A secondary objective arising when reducing unstable approaches is fuel and time savings (O.2). 
Additionally, ANSPs could benefit from a reduced number of missed approaches since they avoid a 
second approach which would reduce their capacity. 

3.2.2 Task Analysis - Work Processes 

From the workshops, we found that the end users desire several modes of operation based on separate 
functionalities. An overview of all discussed modes is presented in Table 15. A short description of the 
requested functionality is summarized in the user stories section 3.3.1. 

 

Table 15: Modes of the Digital Assistant 

Mode User Story 
ID 

Output Starting at 
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Inactive/Passive (when outside the 
operational domain) 

 

none upon Pilot input 

Monitoring HL.M.1 detection & reason for 
detection 

Stabilization 
Gate 

Prediction (when in the operational domain) HL.P.1, 
HL.P.2 

prediction & contributing 
factors 

FAF/FAP 

 

From the FAF/FAP until the runway threshold, a go-around risk prediction mode shall be available and 
active when the approach is inside the operational domain of the ML constituent. Otherwise, the 
Prediction Mode shall be inactive. The Data gathering necessary to compute features, which are the 
input to the ML-constituent, starts 15-20NM from the runway threshold, defined as the start of 
descent in Table 13. 

The end users' tasks in the state-of-the-art approach phase are described in section Task AnalysisTask 
Analysis. This section analyzes how tasks could be distributed with the stabilized approach digital 
assistant. The decision support tool we investigate shall provide additional information during the final 
approach, hence for the part of the approach beyond the Final Approach Point (FAP) in case of a 3D 
approach or Final Approach Fix (FAF) in case of a 2D approach. Figure 25 and Figure 26 illustrate which 
tasks would be automated and performed by a functionality of the ML-constituent during the 
approach. Each functionality captured in the user stories is presented in a different color and described 
in more detail in Table 17. 

 

Figure 25 Sequential Task Analysis of the adopted system. 

Additionally, the sequential task analysis adapts the HTA from 1. System Model, considering the 
additional tasks and new task distributions. The orange-colored boxes illustrate the Digital Assitant's 
tasks. The dark blue boxes illustrate tasks that both pilots perform, whereas the two colored blue boxes 
illustrate tasks performed by the Pilot Flying (PF) and the Auto Pilot (AP). The light blue boxes represent 
tasks performed by the Pilot Monitoring (PM), and Air Traffic Control-related tasks are illustrated in 
black. One can distinguish the two described modes, prediction and monitoring, as the Digital Assistant 
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solely performs the prediction-related tasks. In contrast, the monitoring tasks are a functionality 
simultaneously performed by the PM and the Digital Assistant. 
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Figure 26 Hierarchical Task Analysis of the adopted system. 
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3.2.3 Human-Machine Interface Development 

A well-designed Human-Machine Interface (HMI) is critical to ensuring a safe and effective digital 
assistant, especially in the high-workload environment of the approach phase of flight. Unclear, 
incomplete, or misleading information could lead to increased workload, high stress, and decreased 
situational awareness – potentially quickly making the in-flight situation more dangerous. Section 1.30 
collects HMI Design Principles to guide the development of the stabilized approach digital assistant in 
terms of the HMI aspects to help ensure that the proposed design promotes increased safety in flight. 

An initial diagram of the HMI-relevant elements commonly found on commercial aircraft is shown in 
Figure 15. This figure represents the design space for communicating output from the digital assistant 
to the pilot – via one of many combinations of visual, aural, and haptic cues.  

Preferred HMI Elements  

After discussions with various professional pilots, safety experts, and other interested parties from 
several airlines, the modified diagram shown in Figure 27 was generated. This second figure highlights 
the preferred elements of a well-designed stabilized approach digital assistant HMI. Items colored in 
green are very desirable elements of the digital assistant design; items in yellow may be helpful (but 
should first be evaluated for effectiveness during testing); grey items would likely not be beneficial for 
this digital assistant; and the one element in blue would be useful for system functionality information.  

 

Figure 27 Preferred Stabilized Approach Digital Assistant HMI Design Elements. 

Details about the research methodology, information requested, and preferences communicated are 
documented fully in Appendix B. Appendix B.8 HMI Questionnaire includes a particularly-detailed set 
of questions to enhance the research team’s understanding of desired HMI design characteristics. The 
preferences expressed by pilots and airline representatives reflect a minimalist, high-TRL set of 
modifications and upgrades to existing cockpit systems. This is expected to help ensure the 
effectiveness and reliability of the system in a real airline operations context.  

Recommended Stabilized Approach HMI Design   

The PFD was identified as the primary display for digital assistant visual alerts and information, to 
ensure the pilot is not distracted away from the most critical parameters during an approach. On the 
PFD, Warning/Caution/Advisory (WCA) messages and visual modifications of relevant aircraft 
parameters (e.g. highlighting or reverse video) could efficiently and effectively display the primary 
findings and recommendations of the digital assistant to the crew. The ECAM could be used for system-
related visual alerts (e.g. failure or override of the stabilized approach digital assistant system), as it 
already serves this function for other aircraft systems. No additional displays were recommended for 
displaying visual alerts related to this assistant, and a custom display was also considered undesirable.   

Aural cues could separately alert the crew to predicted or current unstable approach conditions in the 
form of messages and tones. Some pilots suggested launching aural cues (e.g. short, spoken messages 

https://research.innaxis.org/pages/viewpage.action?pageId=155192754
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or a short tone) prior to visual alerts; this timing and mixture of potential message types should be 
evaluated in testing to determine the most effective approach. Otherwise, generally, aural cues would 
be launched simultaneously with appropriate visual cues on the PFD.  

Haptic cues were unpopular overall within the group discussions for this digital assistant; however, 
stick forces and some vibration schemes may be included in testing to verify assumptions stated in the 
discussions.  

It should be noted that HMI preferences were not uniform among all participants and research sources. 
Further information about the design preferences collected during discussions with potential users can 
be found in the User Stories, Section 3.3.1. While the diagram above and the "recommended" design 
description reflect the majority opinions, test cases should be designed to evaluate variations of 
interest around and outside the majority opinions. 

3.3 Implementation 

This section specifies what shall be implemented in the simulation environment within Unstable 
Approach Case Study Demonstration Task 4.2. Therefore, this section derives a set of high-level 
requirements from the user’s perspective as user stories, based on the high-level system description 
provided in sections System Model 3.1 and 3.2., as well as the findings from the user workshops of this 
task. 

3.3.1 User Stories 

In this section, we provide a selection of refined user stories extracted from the workshops. The 
original user stories, removed from each workshop, can be found in Appendix B - Workshops / 
Interviews, in each workshop section. Based on these refined user stories, we compare which 
functionalities and data sources are already accounted for in the discussed ML model and what has to 
be considered in the implementation phase in task 4.2 as a potential new feature. Additionally, some 
user stories contradict, which is natural when asking several people for opinions and feedback. In this 
case, we separate the opinions by employing User A / User B to capture the different opinions. 
Furthermore, we split the user stories into categories: 

• objectives: capturing the envisioned impact from the users 

• high-level functionality: capturing envisioned high-level functionalities from the users 

• non-functional: capturing machine learning, data sources, and general non-functional related 
user input 

• HMI: capturing the user's inputs regarding HMI 

Objectives 

Table 16 Objectives extracted from User/Stakeholder Workshops. 

User 
Story 
ID 

As a... I want... so that... / in order to... Derived 
from... 

O.1 Airline that the Stabilized Approach Assistant 
reduces Unstable Approaches 

increase safety in operation 
and avoid avoidable go-
arounds. 

WS1.O.1 

O.2 Airline that the Stabilized Approach Assistant 
reduces Unstable Approaches 

provide a time and fuel 
benefit for the operation 

WS3.O.2 
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O.3 Airline that the Stabilized Approach Assistant 
increases situational awareness and the 
willingness to perform a go-around 

increase safety in operation 
and the GA/UA ratio in case of 
an unstable approach. 

WS1.O.2, 
WS3.O.1 

 

High Level Functionality 

Table 17 High Level Functionality User Stories extracted from Workshops. 

User 
Story ID 

As 
a... 

I want... so that... / in order to... Derived 
from... 

HL.P.1 Pilot to be provided with information about 
the risk of an unstable approach and the 
associated contributing factors during the 
approach phase 

have decision support on 
how to fly a stabilized 
approach. 

WS1.HL.1, 
WS5.HL.1 

HL.P.2 Pilot to be provided with information about 
the associated contributing factors, in 
case of an unstable approach prediction, 
during the approach phase 

have decision support on 
how to fly a stabilized 
approach. 

WS1.HL.1, 
WS5.HL.1 

HL.P.3 Pilot the Stabilized Approach Assistant to 
indicate, if the approach situation can be 
stabilized at the stabilization gate 

help me decide whether to 
continue the approach or 
not. 

WS5.HL.2 

HL.P.4 Pilot the Stabilized Approach Assistant to 
provide optinal guidance on what task in 
the approach has to be performed until 
what point in the approach 

e.g. when to extract landing gear, speed 
brakes 

I am stabilized at the 
stabilization gate. 

WS3.HL.1, 
WS4.HL.1 

Rational HL.P.4: In WS1.HMI.1, guidance was explicitly not wanted, in order to maintain manual flying skills 

HL.M.1 Pilot the Stabilized Approach Assistant to 
monitor the approach after the 
stabilization gate and detect unstable 
approaches 

there is an objective instance 
assisting the cockpit crew 
with go-around decision-
making. 

WS1.HL.2, 

WS2.HL.1 

HL.P.5 Pilot the possibility to turn off (standby) the 
Stabilized Approach Assistant complete or 
partially 

it doesn't distract me in case 
of nuisance alerts. 

WS5.HMI.2 

 

Non-Functional 

Table 18 Non-Functional User Stories extracted from Workshops. 

User 
Story 
ID 

As 
a... 

I want... so that... / in order to... Derived 
from... 

NF.1 Pilot the Stabilized Approach Assistant to take 
into account: 

• time of day 

• experience of pilots (e.g. total flight 
hours and flight hours on aircraft 
type) 

• flight time 

the ML model can take into 
account experience, 
fatigue, chaos level at 
arrival airport. 

WS1.ML.1, 

WS4.ML.1 
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• cockpit composition 

• (long-time) stress of pilots 

• working atmosphere in the airline 

• the variation of aircraft tracks at a 
certain airport 

for predicting go-arounds 

NF.2 Pilot the Stabilized Approach Assistant to be 
aware of airport-, airline- and aircraft-
specific procedures (Operations Manual) 

e.g. (3D vs. 2D approaches) 

the information computed 
by the assistant fits with 
the Standard Operating 
Procedures of my airline 
and aircraft. 

WS1.ML.2 

NF.3 Pilot the Stabilized Approach Assistant to collect 
data for the predictions, starting with the 
intermediate approach phase 

it takes into account more 
than the final approach 
phase, where the 
prediction is active. 

 

NF.4 

 

the prediction threshold to be customizable it can be configured 
according to the personal 
risk perception. 

WS5.NF.1, 
WS1.HMI.2 

Rational NF.4: According to WS5.NF.1 airlines want to minimize false negatives, whereas pilots want to 
minimize false positives. One way of resolving this contradiction would be to design the prediction threshold 
customizable, or optimize it according to the "area under curve" metric 

NF.5 Pilot the Stabilized Approach Assistant to provide 
predictive information on the stability of the 
approach from the stabilization gate to 
landing, beginning at the final approach 
phase. 

I can get a potentially 
unstable approach to be 
stable at and after the 
stabilization gate. 

WS5.HL.2, 
WS5.NF.2 
,WS4.HL.2 

 

HMI 

Table 19 HMI User Stories extracted from Workshops and Questionnaire. 

User 
Story 
ID 

As a... I want... so that... / in order to... Derived 
from... 

HMI.1 Pilot 
(A,B,C) 

the Stabilized Approach Assistant to 
provide easily understandable, intuitive 
information 

prevent confusion and 
information overload 

 

HMI.2 Pilot 
(A) 

the following information provided by 
the Stabilized Approach Assistant on 
the Primary Flight Display: 

indication of the stability trend of an 
approach 

primary factors contributing to UA 
prediction/actual situation 

unstable approach prediction 
probability 

Maintain focus on the central 
PFD display 

Efficiently indicate 
problematic parameters 

WS3.HMI.3, 
WS2.HMI.1 

HMI.3 Pilot 
(B,C) 

the following information provided by 
the Stabilized Approach Assistant on 
the Primary Flight Display: 

Maintain focus on the central 
PFD display 

Efficiently indicate 
problematic parameters 
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Warning/caution/advisory related to 
predicted or current unstable approach 
situation 

primary factors contributing to UA 
prediction/actual situation 

Prevent information overload 

HMI.4 Pilot 
(A,B,C) 

alerts provided by the Stabilized 
Approach Assistant to be presented in 
a more subtle way for UA predictions 
and a more prominent way for actual 
UA detection. 

properly prioritize alerts 
based on the criticality of the 
information 

WS3.HMI.4 

HMI.5 Pilot 
(B,C) 

alerts provided in a more prominent 
way (e.g. "Warning" level) for severe 
UA predictions 

properly prioritize alerts 
based on the criticality of the 
situation 

 

HMI.6 Pilot 
(A,B,C) 

the Stabilized Approach Assistant to 
integrate seamlessly into the existing 
cockpit systems 

Visual alerts only on the PFD 

One alert at a time for this system 
(most severe takes priority) 

Proper prioritization of visual & aural 
indications 

minimize distraction and 
interference with other 
systems 

WS5.HMI.1 

HMI.7 Pilot 
(A) 

the criticality level of the Stabilized 
Approach Assistant's indication to be 
dependent on prediction probability 
and the distance from the runway. 

to indicate potential 
strategies for handling the 
situation. 

WS4.HMI.1, 
WS4.HMI.2 

HMI.8 Pilot 
(B,C) 

the criticality level of indications to be 
dependent on the probability and 
severity of UA occuring 

to enable earlier preparation 
for GA in severe cases 

 

HMI.9 Pilot 
(A,B,C) 

the Stabilized Approach Assistant to 
not provide numbers or percentages 
for risk predictions 

avoid complicated 
interpretations. 

WS4.HMI.2 

HMI.10 Pilot 
(A) 

the Stabilized Approach Assistant to 
not provide aural information 

avoid overlay with various 
existing aural 
warnings/cautions. 

 

HMI.11 Pilot 
(B,C) 

the Stabilized Approach Assistant to 
provide aural cues to indicate an 
expected or current UA: 

Short, clear spoken messages (2-3 
words) 

Messages include the offending 
parameter(s) & direction of issue (e.g. 
"Unstable - Airspeed Low") 

Minimal repetition 

Volume / style similar to TAWS 

Short tone before aural alerts 

Integrated into existing aural alert 
system, with proper prioritization 

provide clear, concise, useful 
information & support 
regaining a stable approach 
profile 

 

HMI.12 Pilot 
(B) 

the Stabilized Approach Assistant to 
indicate return to stability 

clearly indicate improving 
condition 
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HMI.13 Pilot 
(C) 

the Stabilized Approach Assistant to 
not indicate return to stability 

prevent information overload 

 

HMI.14 Pilot 
(B,C) 

the Stabilized Approach Assistant to 
provide the capability for its alerts to 
be muted 

reduce distraction and 
masking of other alerts 

 

HMI.15 Pilot 
(B,C) 

the Stabilized Approach Assistant to 
provide the capability for user 
override/disabling of the system  

prevent false positives; 
properly handle system 
errors and other special 
situations  

 

HMI.16 Pilot 
(B,C) 

the Stabilized Approach Assistant to 
announce its system health: 

Display digital assistant system errors, 
failures, and overrides on the ECAM 

Record digital assistant system errors, 
failures, and overrides in non-volatile 
memory for post-flight reporting 

inform crew that the digital 
assistant is operable or 
operating in a degraded 
mode & track situations 
where this occured in flight. 

 

HMI.17 Pilot 
(B,C) 

the Stabilized Approach Assistant to 
record the following in non-volatile 
memory for post-flight analysis: 

UA predictions (probabilities of UA & 
time horizons) 

Contributing factors (parameters 
causing UA) 

algorithms used to detect UA & 
corresponding 
uncertainties/confidence levels 

alerts shown to the flight crew 

alerts and other information not 
shown/masked for any reason 

pilot actions (override, muting, 
configuration changes, flight control 
inputs) 

allow for post-flight analysis 
of stabilized approach digital 
assistant; increase clarity and 
trust 

 

 

3.3.2 Risk Assessment 

Based on the Hierarchical Task Analysis performed in the previous sections, the tabular task analysis is 
introduced in this section, providing the engineers with a tool to identify dependencies among 
different tasks and risks associated with each task. This gives the designer not only additional insight 
to the system, but also helps in understanding how changes to the current system will impact existing 
work flows.  

To avoid cluttering, Table 20 only shows the affected and new tasks. In Appendix C, the complete table 
is appended for the interested reader. The cells in column “subtasks” highlighted in red are there to 
emphasize those tasks that are affected by the decision support tool we aim to implement. Based on 
the envisioned changes, an initial discussion of potential risks is performed. For each risk, mitigation 
strategies are defined, which serve as starting point for the development of safety requirements during 
the development and implementation phase in task 4.2. 



 

SafeTeam: Safe Human-digital assistant Teaming in the advent of higher levels of automation in aviation 

 

Table 20 Tabular Task Analysis of all affected tasks. 

Task Subtask Task type New task or 
affected by 
new task  

Task 
affected 
by 

Task 
affects 

Risks Mitigation 
Strategies 

3.1 Monitoring 
aircraft states 

3.1.1 Monitor 
speed 

Acquisition, 
Analysis 

Affected 1.2, 1.1 5.2.2, 2, 1, 
5.2.1, 3.2 

Complacency of Pilot Monitoring, 

Too strict UA limits will lead to nuisance alerts, 

Too strict UA limits will lead to unnecessary GA, 

Recurring pilot 
training 

Appropriate 
setting of alert 
limits 

 

3.1.2 Monitor 
track 

Acquisition, 
Analysis 

Affected 1.2, 1.1 5.2.2, 2, 1, 
5.2.1, 3.2 

Complacency of Pilot Monitoring 

Too strict UA limits will lead to nuisance alerts, 

Too strict UA limits will lead to unnecessary GA, 

Recurring pilot 
training 

Appropriate 
setting of alert 
limits 

 

3.1.3 Monitor 
vertical track 

Acquisition, 
Analysis 

Affected 1.2, 1.1 5.2.2, 2, 1, 
5.2.1, 3.2 

Complacency of Pilot Monitoring 

Too strict UA limits will lead to nuisance alerts, 

Too strict UA limits will lead to unnecessary GA, 

Recurring pilot 
training 

Appropriate 
setting of alert 
limits 

5.2 Intra-
Cockpit 

5.2.1 Announce 
plan to other 
pilot 

Action Affected 1, 4, 6 

 

Complacency of Pilot Monitoring 

Misleading, unclear communication 

Training 

Use of standard 
terminology 

 

5.2.2 Announce 
deviations 

Action Affected 3.1 

 

Complacency of Pilot Monitoring 

Too strict UA limits will lead to nuisance alerts, 

Too strict UA limits will lead to unnecessary GA, 

Training 

Use of standard 
terminology 

1.1 Prudence 
 

Analysis Affected 1.2, 3 

 

Complacency Training 

1.2 Predict UA 
 

Analysis New 3.2, 7, 6.3, 
3.3, 3.2 

3.2, 5.2, 
3.1, 2, 3.3, 
6.3 

False predictions 

False positive - unnecessary GA → introduces 
another risk 
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False negative - suggests a stable approach even 
though it might be(come) unstable, situation 
perceived as safe even though there is an inherent 
risk 

1.3 Data 
Gathering 

 

Acquisition New 

    



 

SafeTeam: Safe Human-digital assistant Teaming in the advent of higher levels of automation in aviation 

 

3.3.3 Simulation Environment 

The Stabilized Approach Digital Assistant Case Study will be implemented in Task 4.2 in the Research 
Simulator at the Institute for Flight System Dynamics at Technical University of Munich. Since we have 
complete access to the flight dynamics model and the data streams within the simulator, we can 
integrate software products like digital assistants. The outputs of the digital assistant will be displayed 
to the pilots in the cockpit to provide prediction results. Several configurations of the display can be 
tested thanks to the flexibility in arranging items to be shown on the cockpit screens. In this section, 
we provide a brief overview of this simulation environment. The research simulator is a self-designed 
and self-build simulator, consisting of several subsystems. Figure 28 illustrates the DO-728, which is 
the simulated aircraft. 

 

Figure 28: Do-728 Jet, Simulated in the Simulation Environment 

Flight Dynamics Model 

The flight dynamics model is the core model of the simulator. It is a high-fidelity simulation model, 
based on real-world tested aerodynamics and propulsion test data and implemented in Simulink by 
the Institute of Flight System Dynamics. Since the implementation is done in-house, the project has 
complete access and control over the simulation environment. Figure 29 exemplarily illustrates an 
simulation model in Simulink. 
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Flight Controls 

The simulator provides common autopilot and auto-thrust modes and can be set up for different 
scenarios very quickly.  

HMI 

The simulator provides a generic cockpit, comparable to an A320 cockpit arrangement, with a fully 
customizable Primary Flight Display as well as a Navigation Display. Furthermore, aural information 
can be customized and played via speakers, similar to e.g. Terrain Awareness Warning System callouts. 
Figure 30 illustrates the HMI of the research simulator. 

Figure 29: Exemplarily Simulator Model in Simulink 
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Visualization 

For visualization, the Flight Gear software is used. The information of the Flight Dynamics Model 

are sent via UDP from the simulation PC to 3 visualization PC's providing a 180° vision from the 

cockpit. 

3.3.4 Case Study Example Scenario 

Table 21 provides an overview of Scenarios, planned to be used in task 4.2 for evaluation purposes. 

Table 21: Case Study Scenarios 

Scenario ID Aircraft Type Approach Type Airport/Runway 

Scen.1.3D DO-728 3D - ILS Antalya RWY 36R 

Scen.1.2D DO-728 2D - NDB Antalya RWY 36R 

Scen.2.3D D728 3D - ILS Sabia Gokcen 

Scen.2.2D D728 2D - NDB Sabia Gokcen 

 

Figure 30: HMI of the Research Simulator 
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Appendix A Concept of Operation – Self Assessment 
This section shall serve as self-assessment regarding a concept of operation. In the following, we list 
the targeted content for a ConOPS from EASA and the US Department of Justice and compare our Use 
Case Definition against these criteria. 

US Department of Justice – Requested Content 

• Introduction 

o Project Description 
o Overview of Envisioned System 
o Document References 
o Glossary 

• Goals, Objectives, and rationale for the new System 

• Work Processes to be automated/supported 

• High-Level functional requirements 

o High-level features 
o Additional features 
o Requirements Traceability 

• High-Level operational Requirements 

o Non-functional requirements 
o Deployment and Support Requirements 
o Configuration and Implementation 
o System Environment 

• User Classes and Modes of Operation 

o Classes/Categories of Users 
o User Classes Mapped to Functional Features 
o Sample Operational Scenarios 

• Impact Considerations 

o Operational and Organizational Impacts 
o Potential Risks and Issues 

EASA – Requested Content 

EASA Objective ID Objective 

Objective CO-04 The applicant should define and document the ConOps for the AI-based system, 
including the task allocation pattern between the end user(s) and the AI-based system. 
A focus should be put on the definition of the operational design domain (ODD) and on 
the capture of specific operational limitations and assumptions. 

 

The anticipated means of compliance are formulated with the following requests: The ConOps should 
be described at the level of the AI-based system, where the human is expected to achieve a set of high-
level tasks. The ConOps should consider: 

• an end-user-centric operational description of the AI-based system; 
• the list of potential end users identified under Objective CO-01; 

https://www.justice.gov/archive/jmd/irm/lifecycle/appendixc9.htm
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• how the end users will interact with the AI-based system: this description should be driven 
by the task allocation pattern between the end user(s) and the AI-based system, further 
dividing the high-level tasks identified under Objective CO-02 in as many sub-tasks as 
necessary; 

• the definition of the operational design domain (ODD), including the specific operating 
limitations and conditions appropriate to the proposed operation(s); 

• descriptions of the operational scenarios in their ODD; and some already identified risks, 
associated mitigations, limitations and conditions on the AI-based system. 

EASA Objective ID Objective 

Objective CO-05 The applicant should perform a functional analysis of the system. 

The functional analysis consists in identifying, proposing a break-down of the high-level 
function(s) into sub-function(s), allocating the sub-function(s) to the subsystem(s), 
AI/ML constituents and items in line with the architecture choices. The delineation 
between AI/ML item and non-AI/ML item it performed at this stage: at least one item 
is allocated with AI functions and is thus considered an AI/ML item. 
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Appendix B Stakeholder and User Workshops/Interviews 

B.1 Workshop Preparation Template 
General 

Questions Answers 

1. What problems do you associate with unstable approaches?  

2. What are the reasons for unstable approaches?  

3. Can unstable approaches be reduced in your operation?  

4. How would you expect a prediction tool to benefit the operation?  

5. How would you expect a prediction tool to adversely affect the operation?  

6. What would the impact of the tool have to be, in order to be a reasonable investment?  

 

Machine Learning 

Questions Answers 

1. Which solution would you preferer?  

2. Would you rather have it work differently?  

3. Are there data sources not mentioned here, you deem relevant?  

4. From which point in approach should data be used for prediction?  

5. What features do you think should be extracted from the data?  

6. Do you consider high Precision or Recall more important?  

7. How good would the prediction have to be, to be acceptable?  

8. Do you think 30 seconds is a large enough prediction time frame?  

9. Do you think 4NM is a valid prediction point?  

 

Operation 

Questions Answers 

1. Which information/guidance would you expect from this machine-learning artifact? 
• Anomaly detection? 
• Guidance on how to stabilize a potential UA? 

 

2. How would you incorporate this assistant in your approach / How would you change the 
Approach Procedure, given this information? 

• Are you agreeing with the Hierarchical Task Analysis for the reference approach? 
• How would the Hierarchical Task Analysis change for the solution approach? 

 

3. What different approach types should the tool consider?  

4. How should the assistant behave, if an approach is outside of the training data domain?  

 

HMI 

Questions Answers 

1. Which level of information should be presented 
a. Deterministic information 
b. Probabilistic information? 
c. Contributing factors for prediction? 

 

2.How should the information be provided? 
1.  

a. Visual? 
b. Aural? 
c. Haptic? 

 

3. How Critical is the information compared to other systems? (Warning/caution/advisory)  
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B.2 Workshop 2023/04/27 
 

Nomenclature: 

• PF - Pilot Flying 

• UA - Unstable Approach 

• GA - Go Around 

B.2.1 Semi-Structured Interview: 
General discussion at the start 

What is your initial feeling regarding this idea? 

• A stabilized approach shall prevent runway excursion 

• If the tool helps to decide, whether an approach will be stabilized it might be useful. ← 
potential user story  

• i.e. the tool tells the pilot x-wind limit will not be exceeded 

• A detection tool (automated pilot monitoring) could be useful. ← alternative/additional 
feature: SmartRunway and SmartLanding from Honeywell is such a system.  

• Useful for new/inexperienced and fatigued pilots (neglecting data protection issues for now) 
← Interesting idea to use data from crew management. This will be tricky/not possible due 
to data protection 

• Potential interesting data to train an ML model on: 

o Time of day 
o experience 

• flight time (Every pilot is allowed to work a specified amount of hours a day.) ← This could be 
taken from FDM data, possible (new) feature 

• Cockpit composition 

• assistant can make predictions earlier or later 

• Look specifically at stable approaches 

• Take into account different aircraft and airline operating manuals. ← This will part of defining 
the OD for the system /case study (we will only focus on a smaller OD but definitely, different 
A/Cs, different airlines (SOPs) will have to be treated  

• Over-reliance on such a system, not replacing the pilots only assisting ← Potential user story: 
Concern especially when thinking about guidance on how to land stable vs. providing 
information on causes of potential unstable approach reasons.  

• Use AI to teach pilots to think more in terms of probabilities 

• Greatest benefit in preparing a pilot for the unlikely event ← potential target metric in 
simulator studies. change in situational awareness w and w/o predictive information  

• Flight Schools ← potential Stakeholder, we haven't considered yet 

• Drone operations are fully operated, how are they handling potential instability? is it even 
considered? 

When is an approach unstable, i.e. one data point outside the envelope is not an UA → So when is it? 

• Compare to a traffic light: no black and white but yellow in between 

• Look at the time that a deviation from the norm is not counteracted by the pilot flying (PF) 

Questions Answers 

https://aerospace.honeywell.com/us/en/products-and-services/product/hardware-and-systems/terrain-and-traffic-awareness/smartrunway-and-smartlanding
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1. What problems do you associate 
with unstable approaches? 

If there is information during flight preparation giving a risk of UA could 
help prepare a pilot's mindset for a GA. ← Not directly the application we 
are looking into but worth considering 

2. What are the reasons for 
unstable approaches? 

 

3. Can unstable approaches be 
reduced in your operation? 

 

4. How would you expect a 
prediction tool to benefit the 
operation? 

 

5. How would you expect a 
prediction tool to adversely affect 
the operation? 

Too many false positive indications may cause the crew the distrust the 
system → Pilots will abandon it ← Potential technical requirement / non-
functional requirement, regarding prediction quality → precision vs. 
recall 

6. What would the impact of the 
tool have to be, in order to be a 
reasonable investment? 

Evidence based training 

Ga/UA ratio increase ← Possible Performance Metric for Evaluation in 
Simulator 

Reduce UAs ← Goal and Possible Performance Metric for Evaluation in 
Simulator  

Increase Situational Awareness ← Goal and Possible Metric for Simulator 
Case Study  

In risk assessment go to places we haven't gone 

 

Operations 

• Comment on Graphic → Turboprops do not have green dot speed 
• Add stabilization criteria to the picture for completeness 

Questions Answers 

1. Which information/guidance would you 
expect from a predictive tool / unstable 
approach prediction? 

Differentiate functionality above and below stabilization gate ← 
alternative/additional feature: SmartRunway and 
SmartLanding from Honeywell is such a system. This could be 
expressed in different features or modes 

Pilot monitoring function after stabilization gate 

Predictive functionality before. 

2. How would you incorporate this assistant 
in your approach / How would you change 
the Approach Procedure, given this 
information? 

 

Information on potential reasons for UA is helpful but no 
indication on how to fly the A/C necessary → pilot should know 
how to stabilize the aircraft ← Decision Support rather than an 
automation tool 

3. What different approach types should the 
tool consider? 

Differentiate between precision and non-precision approach ← 
Different Modes / Operational Domains 

4. How should the assistant behave, if an 
approach is outside of the training data 
domain? 

An indication that tool is (in-)active ← HMI User Story 

B.2.2 User Stories extracted after Interview 

https://aerospace.honeywell.com/us/en/products-and-services/product/hardware-and-systems/terrain-and-traffic-awareness/smartrunway-and-smartlanding
https://aerospace.honeywell.com/us/en/products-and-services/product/hardware-and-systems/terrain-and-traffic-awareness/smartrunway-and-smartlanding
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User Story 
ID 

As a... I want... so that... / in order to... 

WS1.HL.1 Pilot the Stabilized Approach Assistant to help me decide, 
whether an approach will be stabilized (or not) 

I can get a potentially unstable 
approach to be stable at and after 
the stabilization gate. 

WS1.HL.2 Pilot the Stabilized Approach Assistant to monitor the 
approach after the stabilization gate and detect 
unstable approaches 

there is an objective instance 
assisting the cockpit crew with go-
around decision-making. 

WS1.ML.1 Pilot the Stabilized Approach Assistant to take into account: 

time of day 

experience of pilots (e.g. total flight hours and flight 
hours on aircraft type) 

flight time 

cockpit composition 

for predicting go-arounds 

the ML model can take into account 
experience and fatigue. 

WS1.ML.2 Pilot the Stabilized Approach Assistant to be aware of 
airport-, airline- and aircraft-specific procedures 
(Operations Manual) 

e.g. (3D vs. 2D approaches) 

the information computed by the 
assistant fits with the Standard 
Operating Procedures of my airline 
and aircraft. 

WS1.HF.1 Pilot that the Stabilized Approach Assistant provides 
predictions on the stability of an approach and 
information about the causes for the prediction, but 
no guidance on how to stabilize the approach 

over-reliance on an assistance 
system does not occur and the 
system does not replace a pilot 
(single pilot operation). 

WS1.HF.2 Pilot that Stabilized Approach Assistant to minimize false 
positive predictions 

avoid distrust and disturbance by 
the cockpit crew. 

WS1.O.1 Airline that the Stabilized Approach Assistant reduces 
Unstable Approaches 

increase safety in operation and 
avoid avoidable go-arounds 

WS1.O.2 Airline that the Stabilized Approach Assistant increases 
situational awareness and the willingness to perform a 
go-around 

increase safety in operation and 
increase the GA/UA ratio in case of 
an actual unstable approach. 

B.3 Workshop 2023/04/28 

B.3.1 Semi Structured Interview 

General 

What is your initial feeling wrt this idea? 

• Assist Callouts of PM, make callout/indications if a value is exceeded ← alternative/additional 

feature: SmartRunway and SmartLanding from Honeywell is such a system.  

• In Some situations pilot might not be aware of what will happen in a few seconds → here this 
would be useful 

• Needs to look ahead, i.e. extrapolate pilot inputs, windshear, etc. 

• Show the trend that an approach becomes unstable ← Potential User Story HMI 
• Suitable for fatigued pilots after long days ←  Include Flight Time in the Feature Selection Process 

(Nr. of Legs might be difficult due to data protection) 

• No matter of Experience: pilot monitoring → PF has a tendency of having issues with one 
parameter in approach → callouts → PF might be offended ← automation could be an 
objective instance 

• Modern aircraft digital → do not feel the environmental inputs as directly as with older aircraft 

https://aerospace.honeywell.com/us/en/products-and-services/product/hardware-and-systems/terrain-and-traffic-awareness/smartrunway-and-smartlanding
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Questions Answers 

1.What problems do you associate with unstable 
approaches? 

 

2. What are the reasons for unstable 
approaches? 

ILS Loc / GS deviations 

Speed 10-20kts above target speed 

Speed loss 

1000 ft gate: Landing checklist: alles erledigt 

trends negative and not counteracted 

SOPs adhered to 

3. Can unstable approaches be reduced in your 
operation? 

 

4. How would you expect a prediction tool to 
benefit the operation? 

Every 6 month simulator 

AI only talks to PM → problem with pilot incapacity 

Neutralize some of the problems associated with Human 
Factors, i.e. if a Co-Pilot does not speak up to the captain 

5. How would you expect a prediction tool to 
adversely affect the operation? 

 

6. What would the impact of the tool have to be, 
in order to be a reasonable investment? 

 

 

Operations 

 

Questions Answers 

Which level of information should be presented 

Deterministic information 

Probabilistic information? 

Contributing factors for prediction? 

no % of UA tendency 

2.How should the information be provided? 

 

Visual? 

Aural? 

Haptic? 

if aural short and concise 

preferably visual indication 

PFD: color Aircraft symbol/Artificial Horizon 
from blue->yellow->red 

as simple as possible 

3. How Critical is the information compared to other systems? 
(Warning/caution/advisory) 

before 1000 ft gate advisory, later caution 

B.3.2 User Stories Extracted from Interview 

User Story 
ID 

As 
a... 

I want... so that... / in order to... 

WS2.HL.1 Pilot the Stabilized Approach Assistant to assist 
the pilot monitoring with callouts 

there is an objective instance assisting the 
cockpit crew with go-around decision-making. 

WS2.HMI.1 Pilot an indication of the stability trend of an 
approach 

react to a changing/dynamic situation. 
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WS2.HL.2 Pilot help from a prediction tool, especially in 
situations where fatigue is high / after long 
days 

I can avoid mistakes due to fatigue. 

B.4 Workshop 2023/05/12 

B.4.1 Semi-Structured Interview 

General 

What is your initial feeling wrt this idea? 

• Great potential when an approach is still relatively at the beginning, certain factors not in view 
e.g. wind near the airport 

• UA criterion is not hard (e.g. speed downward limited by stall, upward no real criterion), in this 
situation predictions could help decide if the approach will be successful. 

• Accidents resulting from UA often result from fixation (to land the aircraft despite not being 
stable). In these situations, such a tool would be useful ← User Story / Metric for Simulator 
Exercises (GA/UA rate), similar to WS1.O.1 

• If the approach is shorter than first thought, it helps to be aware of the situation. 

• Reduce the hierarchy threshold from CoPi to Captain ← User Story (already similar one from 
first workshop) 

• Set a limit, from when what has to happen 

• How to get to the 1000 ft gate that you are stable there 

• Forecast to airport and weather what should be done differently to be stabilized 

• The system provides additional experience, energy-state monitoring 

• Comparison of target approach trajectories with actual trajectories 

Questions Answers 

1. What problems do you 
associate with unstable 
approaches? 

 

2. What are the reasons for 
unstable approaches? 

Missed Configuration 

The approach is unexpectedly longer 

Sporty flying style 

ATC Instructions 

3. Can unstable approaches be 
reduced in your operation? 

 

4. How would you expect a 
prediction tool to benefit the 
operation? 

The company has a high stable approach rate, however, a very low go-
around/unstable approach rate ← Increasing the go-around 
willingness/preparedness of pilots ← Possible Objective/Goal of this tool, 
Similar to WS1.O.2 

5. How would you expect a 
prediction tool to adversely 
affect the operation? 

Too many false alerts or indications for insignificant events → Pilots will 
ignore it or be distracted ← Similar to User story WS1.HF.2 

If its too operating effort is too high, it can be distractive 

6. What would the impact of the 
tool have to be, in order to be a 
reasonable investment? 

Time, Fuel savings ← Secondary Objective for the tool 

Safety Benefit← Major Objective for the tool 

 

Operational 
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Questions Answers 

1. Which information/guidance would you expect from 
this? 

Anomaly detection? 

Guidance on how to stabilize a potential UA? 

fly fast + speed brakes → no use if ATC specifies 
speed 

fly slow + flaps → no use if ATC specifies speed 

gear out → conservative approach → useful hint for 
tool 

Off path descend feature → specifies how to 
descend with speed brakes and or gear out ← 
Possible feature / incl. in user story 

between maximum and minimum points between 
which certain measures must be taken to be able to 
stabilize at the stabilization gate 

2. How would you incorporate this assistant in your 
approach / How would you change the Approach 
Procedure, given this information? 

Based on the presented Task analysis, the 
Configuration and Monitoring Tasks change ← 
Action item, adapt task analysis illustrations 

example NARIDAS: Riskmonitor in shipping, traffic 
lights green, yellow red 

3. What different approach types should the tool 
consider? 

 

4. How should the assistant behave, if an approach is 
outside of the training data domain? 

 

 

HMI 

Questions Answers 

Which level of information should be presented 

Deterministic information 

Probabilistic information? 

Contributing factors for prediction? 

no integers or percentages 

Contrib. Fac. relevant if it is not clear what 
contributes to instability 

2.How should the information be provided? 

 

Visual? 

Aural? 

Haptic? 

is displayed as a tape after a certain point. 

flashes as soon as something gets out of hand 

PFD 

Height deposit point always green → color-code to 
infer energy state. 

At Aural too many other systems already 
babbling/beeping there. 

Potential User Story 

3. How Critical is the information compared to other 
systems? (Warning/caution/advisory) 

subtle indication for prediction at first ← Potential 
User Story 

distinction can something still be done, must 
something be done, is it too late to do something 

4. Do you know of any other assistant systems and do 
you use them? 

 

 

Notes for Task Analysis 

• Green dot speed → maneuvering speed rename 

• flaps 2 before FAP 
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• HTA: "Monitor/Control Vertical Guidance" 

• Manage: break setup auto-brake an/aus, light setup, parameter anpassen 

• Weather: separate task in HTA 

B.4.2 User Stories Extracted from Interview 

User Story 
ID 

As 
a(n)... 

I want... so that... / in order to... 

WS3.O.1 Airline the Stabilized Approach Assistant to reduce the 
hierarchy gap in the cockpit, 

Pilot Monitoring does not 
hesitate to call out an unstable 
approach. 

 Pilot the Stabilized Approach Assistant to provide guidance 
on what task in the approach has to be performed until 
what point in the approach 

e.g. when to extract landing gear, speed brakes 

I am stabilized at the 
stabilization gate. 

 Pilot the Stabilized Approach Assistant to compare the 
targeted approach trajectory with the actual trajectory 

provide information on 
deviations to the optimum. 

WS3.O.2 Airline the Stabilized Approach Assistant to provide a safety, 
time, and fuel benefit by minimizing unstable 
approaches 

it is a reasonable investment. 

WS3.HMI.1 Pilot the Stabilized Approach Assistant to not provide 
numbers or percentages for risk predictions 

avoid complicated 
interpretations. 

WS3.HMI.2 Pilot the Stabilized Approach Assistant to not provide aural 
information 

avoid overlay with various 
existing aural warnings/cautions. 

WS3.HMI.3 Pilot the information provided by Stabilized Approach 
Assistant to be presented in the Primary Flight Display 

it is available on a central display 

WS3.HMI.4 Pilot the information provided by Stabilized Approach 
Assistant to be presented in a subtle way, in case of 
predictions and a more prominent way in case of a 
detection 

take into account the criticality 
of the information. 

 

B.5 Workshop 2023/05/15 

B.5.1 Semi Structured Interview 

General 

Questions Answers 

What problems do you associate with 
unstable approaches? 

Runway overrun 

Hard landing 

More generally, landing-related incidents 

2. What are the reasons for unstable 
approaches? 

 

3. Can unstable approaches be 
reduced in your operation? 

 

4. How would you expect a prediction 
tool to benefit the operation? 

Prediction: less UA ← Covered by Objective WS1.O.1 
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UA indication: more G/A ← LB: this and the point above imply two 
functionalities. One predictive and one reactive functionality. ← 
Covered by Objective WS1.O.2 

Descend planning support 

increase the G/A willingness/readiness ← Covered by Objective 
WS1.O.2 

5. How would you expect a prediction 
tool to adversely affect the operation? 

False negatives, nuisance alerts ← WS1.HF.2 

Overreliance on technique / Loss of manual flying skills ← WS1.HF.1 
(overreliance) Add Loss of Manual Flying Skill as neg. Impact 

6. What would the impact of the tool 
have to be, in order to be a reasonable 
investment? 

In non-normal operation: guidance tool which guides you on Runway 
← Potential Feature (XAVION) 

Benefit over existing Systemen (E-GPWS, ...) ← Impact User Story 

 

Machine Learning 

Questions Answers 

1. Which solution would you preferer? Both should be tested in the simulator 

2. Would you rather have it work differently? 

A deterministic detection for example? 

 

3. Are there data sources not mentioned here, 
you deem relevant? 

Soft factors: ← already covered by WS1.ML.1 

Duration of Flight 

Shorthaul: Duty time 

Tracks of all aircraft at a certain airport ← potential feature 

e.g.: Thunderstorm in Denver → ATCO performs Weather 
Avoidance 

e.g.: Thunderstorm in Frankfurt → little bit of chaos 

e.g.: Thunderstorm in Antalya → complete chaos 

Long-time stress ← possible addition to WS1.ML.1 

Working atmosphere ← possible addition to WS1.ML.1 

4. From which point in approach should data be 
used for prediction? 

From Top of Descent, data can be used for predictions 

start to compute prediction only make sense, when go-
arounds make sense 

e.g. when the radio altimeter is active (2500 ft) 

Glide Intercept → maybe a few miles earlier 

5. What features do you think should be 
extracted from the data? 

 

6. Do you consider a high Precision or Recall 
more important? 

 

7. How good would the prediction have to be, to 
be acceptable? 

 

8. Do you think 30 seconds is long enough 
prediction time frame? 

7 sec for engine from IDLE to G/A Power → 30 sec long 
enough 

Airbus Trend Vector 10 sec 

Vorlauf um sich auf G/A vorbereiten → Ampel gelb 

Unterscheidung von "jetzt muss was passieren - rot" zu noch 
"kurz bedenken - gelb" 

https://xavion.com/app/real-world/
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9. Do you think 4NM is a valid prediction point?  

 

Operations 

Questions Answers 

1. Which information/guidance would you expect from this? 

 

No guidance 

Prediction and detection 

2. How would you incorporate this assistant in your approach 
/ How would you change the Approach Procedure, given this 
information? 

Continuous risk assessment 

from begin of descend until leaving the runway 

 

The tool goes from info source to caution 

probabilistically based → later in the approach 
when accidents also become probable 

Key Card" - personal data with personal 
preference settings, risk-taking level ← 
Potential ML/HMI User Story. 

personalized risk estimation 

3. What different approach types should the tool consider? Precision- und Non-precision approaches (2- vs 
3-D) und Manual Approach 

4. How should the assistant behave, if an approach is outside 
of the training data domain? 

 

 

HMI 

Questions Answers 

Which level of information should be 
presented 

Deterministic information 

Probabilistic information? 

Contributing factors for prediction? 

 

2.How should the information be 
provided? 

 

Visual? 

Aural? 

Haptic? 

• traffic light system 

• green, below a certain threshold, 

• yellow, predicted above a certain threshold, 

• red, UA detected → no way of correction → go-
around 

• PFD in the colored frame, compared to the Ambilight 
of TVs 

• Info too relevant for 

• ND 

• ECAM 

• blinking indication, when UA detected 

• In ECAM provide more details 

• Additional Callouts at the stabilization gate 

• band on the side of PFD representing 0-1 

• Separating external and internal factors 

• external - cannot be influence by the pilot 

• No text, No number 
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• No additional display 

3. How Critical is the information 
compared to other systems? 
(Warning/caution/advisory) 

Advisory, Caution, Warning depending on criticality of prediction 
and distance to threshold ← User Story (Implementation Idea, risk 
table with different thresholds and distances to runway defining 
color of indication) 

4. Do you know of any other assistant 
systems and do you use them? 

 

 

B.5.2 User Stories Extracted from Interview 

User Story ID As 
a(n)... 

I want... so that... / in order to... 

WS4.Impact.1 Pilot the Stabilized Approach Assistant to NOT cause loss 
of manual flying skills 

pilots can still fly aircraft 
without the help of assisting 
systems. 

WS4.Impact.2 Airline the Stabilized Approach Assistant to provide a benefit 
compared to existing systems like TAWS 

be a reasonable investment. 

WS4.Feature.1 Airline the Stabilized Approach Assistant to provide guidance 
towards the runway in non-normal operation (e.g. 
like Xavion) 

it is a reasonable investment. 

WS4.ML.1 Pilot the Stabilized Approach Assistant to consider the 
variation of aircraft tracks at a certain airport 

measure the level of chaos at 
the airport. 

WS4.ML.2 

(addition to 
WS1.ML.1) 

Pilot the Stabilized Approach Assistant to take into 
account the (long-time) stress and working 
atmosphere in the airline 

 

WS4.HL.1 Pilot the Stabilized Approach Assistant to provide 
predictions on the stability of an approach from the 
GS Interception point on 

I can correct potentially 
unstable approaches early on. 

WS4.ML.3 Pilot the Stabilized Approach Assistant to take into 
account flight performance information from the top 
of descent onwards 

it can evaluate the complete 
descent phase when making 
predictions. 

WS4.HMI.1 Pilot, the criticality level of Stabilized Approach Assistant's 
indication to be dependent on prediction probability 
and the distance from the runway. 

to indicate potential 
strategies for handling the 
situation. 

WS4.HMI.2 Pilot the indication of predictive information to be visual 
(preferably in the PFD), following a continuous color 
grading. 

it is not too prominent, 
compared to other important 
information 

 

B.6 Workshop 2023/05/23-24 Project Internal Workshop 
Attendees: 

• Pegasus 

• TUM 

• INX 

• CAA 

B.6.1 Semi Structured Interview 
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General 

What is your initial feeling wrt this idea? 

• Awareness tool ← Decision Support Tool User Story  

• Include Jeppesen Reference pages 

o standard practices for each airport (i.e., 160 kt until 6 NM) 

• Interesting airports ← Case Study Definition / Scenario / OD  

o Antalya RWY 36 R and RWY 36 C 
o Sabia Gokcen 

• Regulatory framework 

o Certification - tool will probably have to be certified 
o Bow Tie - providing risks and steps such that a AI tool can be implemented 

▪ Crew and operator training 
▪ Change management 

o Updating in-air or only on ground will impact certification 

 

Questions Answers 

1. What problems do you 
associate with unstable 
approaches? 

 

2. What are the reasons for 
unstable approaches? 

Late configuration 

1000ft AAL - configuration altitude 

High energy state 

Late ATC instruction 

Pilot error ← Possible high-level metric in the simulator case study would 
need to be refined to specify what errors can occur. Possibly also implicitly 
defined through the task analyses, as every task, if done wrong/forgotten is 
a possible error. 

Glide slope 

3. Can unstable approaches be 
reduced in your operation? 

 

4. How would you expect a 
prediction tool to benefit the 
operation? 

The most benefit is reducing GA ← Objective WS1.O.1 / WS3.O.2 

Time 

Money 

5. How would you expect a 
prediction tool to adversely 
affect the operation? 

Adverse effects ← Objective WS4.O.1 / WS3.O.2 

Loss of training/skills 

Complacency - over-reliance 

Startle effect 

6. What would the impact of the 
tool have to be in order to be a 
reasonable investment? 

 

 

Machine Learning 
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Questions Answers 

1. Which solution would you preferer?  

2. Would you rather have it work differently?  

3. Are there data sources not mentioned here, 
you deem relevant? 

 

4. From which point in approach should data be 
used for prediction? 

 

5. What features do you think should be 
extracted from the data? 

 

6. Do you consider a high Precision or Recall more 
important? 

 

7. How good would the prediction have to be, to 
be acceptable? 

 

8. Do you think 30 seconds is large enough 
prediction time frame? 

Prediction horizon: 30-60 sec before becoming unstable ← 
Operational User Story 

9. Do you think 4NM is a valid prediction point? Starting at 8-10 NM out ← FAP/FAF as boundary 
Operational User Story 

 

Operations 

• Predictions are mostly interesting for the final approach ← User Story, interesting regarding 
the system boundaries, especially for the prediction phase. 

 

 

HMI 

Questions Answers 

Do you have experience with other 
digital assistant systems? If so, which 
ones? (e.g. runway overrun protection 
(ROW/ROPS), overspeed protection, 
etc)  

Airbus' ROPS, two versions of the system 

Wet or Dry selector know -> calculates and warns according 
conditions 

Older version warns "if wet, runway too short" 

Honeywell Smart Runway Smart Landing 

- If you have experience with other 
digital assistants, what positive HMI 
aspects would you like see 
implemented in future assistants? 

People are familiar with SAM → it makes sense to integrate into such 
system ← HMI user story / Seamless integration  

- If you have experience with other 
digital assistants, what negative HMI 
aspects would you like a new system to 
avoid?  

Minimize false negatives ← ML Objective/Non-functional User Story, 
in Precision vs. Recall tradeoff / this should be clarified again, seems 
counter-intuitive and contradicts the minimizing nuicance alerts 
WS1.HMI.2 → possibly max. AUC as a target metric? Clarify with 
Pablo Hernandez (INX)  

Avoid an additional system ← Seamless Integration in existing tools  

No Haptic feedback 

2. Which other systems/messages 
would have a similar level of priority as 
this unstable approach assistant? 

 

https://research.innaxis.org/display/~pablo.hernandez
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(ie what level of priority would you 
assign to this digital assistant system?) 

 Green -> Go 

Blue -> Something is developing 

Blinking -> severe, click to stop blinking 

Override mode → turn system standby ← HMI feature  

Similar to inhibit button in ROPS 

Differentiate scenarios for prediction 

Start algorithm/announcements at FAP  

Can approach still be stabilized by the 1000 ft?  

Is the approach passed the 1000 ft gate? → detection  

 

B.6.2 User Stories Extracted from Interview 

User Story ID As 
a(n)... 

I want... so that... / in order to... 

WS5.HL.1 Pilot to be provided with information about the risk of an 
unstable approach and the associated contributing 
factors during the approach phase 

have decision support on how 
to fly a stabilized approach. 

WS5.HL.2 Pilot the stabilized approach digital assistant to indicate, if 
the approach situation 

 

WS5.HL.2 Pilot the stabilized approach digital assistant to provide 
predictive information on the stability of the 
approach from the 1000ft gate to landing, beginning 
at the final approach phase. 

I can get a potentially unstable 
approach to be stable at and 
after the stabilization gate. 

WS5.HMI.1 Pilot the stabilized approach digital assistant to integrate 
seamlessly into the existing HMI concept and similar 
warning systems 

it minimizes distraction and 
provides intuitive handling. 

WS5.HMI.2 Pilot the possibility to turn off (standby) the stabilized 
approach digital assistant complete or partially 

it doesn't distract me in case of 
nuisance alerts. 

WS5.NF.1 Airline the stabilized approach digital assistant to be 
configured towards minimizing false negatives 

it covers most unstable 
approaches. 

WS5.NF.2 Pilot the stabilized approach digital assistant to provide 
predictions from the final approach point / fix on 

I can get a potentially unstable 
approach to be stable at and 
after the stabilization gate. 

WS5.Scenario.1 Airline the case study to include: 

Antalya RWY 36 R and RWY 36 C 

Sabia Gokcen 

test the idea in a relevant 
environment. 

 

B.7 Workshop 2023/05/26 

B.7.1 Semi-Structured Interview 

General 

What is your initial feeling wrt this idea? 

• Added value and safety gains ← Impact  
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• Redundancy is further increased 

• 1000 ft stabilized call → triggered by system (visual) ← WS1.HL.2 

• Probabilistic display, color coded. 

• Says at gate "continue" or "go around" ← WS1.HL.2 

• AI → recommendation character ← WS5.HL.1 

• Ground speed mini function 

o ATIS moderate turbulence to Malaga 

o speed self selected 

o hard to be stabilized at 1000 ft 

o at special airports with special winds (Funchal) after 1000 ft gate over/under speed 
will be neglected ← WS1.ML.2 

Questions Answers 

1.What problems do you associate with unstable 
approaches? 

UA starts already in cruise or early approach 

Stabilized approach = stabilized at the gate 

2. What are the reasons for unstable approaches? Descent planning 

Environmental factors 

ATC 

Work in Cockpit, skills 

3. Can unstable approaches be reduced in your 
operation? 

 

4. How would you expect a prediction tool to benefit 
the operation? 

 

5. How would you expect a prediction tool to adversely 
affect the operation? 

 

6. What would the impact of the tool have to be, in 
order to be a reasonable investment? 

Information of probability of go around at a given 
airport at a given time is valuable 

This awareness is a benefit to safety 

 

Machine Learning 

Questions Answers 

1. Which solution would you preferer? continuously solution 
preferred 

2. Would you rather have it work differently? 

A deterministic detection for example? 

 

3. Do you know if there are data sources not mentioned here, you deem 
relevant? 

 

4. From which point in approach should data be used for prediction?  

5. What features do you think should be extracted from the data?  

6. Do you consider a high Precision or Recall more important?  

7. How good would the prediction have to be, to be acceptable?  

8. Do you think 30 seconds is large enough prediction time frame?  
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9. Do you think 4NM is a valid prediction point?  

 

 

Operational 

Questions Answers 

1. Which information / guidance would you expect from this?  

2. How would you incorporate this assistant in your approach / How would you 
change the Approach Procedure, given this information? 

 

3. What different approach types should the tool consider? Matrix for approach types 

Which approach has the 
most go-arounds? 

4. How should the assistant behave, if an approach is outside of the training data 
domain? 

 

 

• Special airports are particularly important, e.g. ← Interesting Case Studies but not sure if 
possible within this project 

o Funchal 

o Heraklo 

Modify task analysis 

• Setting Go Around altitude → check distance vs. altitude 

• Intermidiate approach column→ start monitor 

• FAP → start giving information 

•  

o Follow ILS → pilot flying 

o Monitor speed pilot monitoring → both Piloten 

o AI shoudl do: 

▪ monitor 

▪ Communicate → announce deviations 

▪ Manage → FMS setup 

▪ Weather → monitoring wind speeds 

 

HMI 

Questions Answers 

1. Which level of information should be presented 
a. Deterministic information 
b. Probabilistic information? 
c. Contributing factors for prediction? 

• What is default status if 
everything is ok  

o silence or output 
• Contributing factors 
• How to announce system is not 

working correctly 
o FMA - AI Anzeige 

2.How should the information be provided? 
1.  

• In field of vision 
o PFD  
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a. Visual? 
b. Aural? 
c. Haptic? 

o ND 
• ECAM 
• Only indication for PM? 

3. How Critical is the information compared to other 
systems? (Warning/caution/advisory) 

 

B.7.2 User Stories Extracted from Interview 

User Story 
ID 

As 
a... 

I want... so that... / in order to... 

WS6.HIMI.1 Pilot the PFD, ND to provide the information of the stabilized 
approach digital assistant and the ECAM to provide error 
messages regarding the stabilized approach digital assistant 

the important 
information are within 
the file of vision 

 

B.8 HMI Questionnaire  
1. Information Requested 

The full list of information requested in the HMI questionnaire is included below.   

Question/Information Requested 

Email Address 

Your Name (LAST NAME, first name; or group name) 

Current Job Title(s) / Role(s) 

Current Employer(s) & Affiliation(s) 

Please select all that apply for you: 
__ Licensed fixed-wing pilot (any rating) 
__ Licensed rotary-wing pilot (any rating) 
__ Commercial pilot, currently flying for an airline. 
__ Commercial pilot, flying for a non-airline entity. 
__ Employee working in a safety-focused group 
__ Employee in a design/engineering-focused group. 
__ Other... 

How many hours do you have in the following aircraft? [Airbus A320 Series] 

How many hours do you have in the following aircraft? [Airbus A321 Series] 

How many hours do you have in the following aircraft? [Boeing 737 Series (not MAX)] 

How many hours do you have in the following aircraft? [Boeing 737 MAX Series] 

How many hours do you have in the following aircraft? [Other (please write in the following box)] 

"Other" aircraft - Please describe here 

Do you have any prior experience with digital assistants in aviation?  

If Yes, which digital assistants do you have experience with (e.g. Runway overrun protection)?  

(If yes) Please describe positive HMI aspects you would like see implemented in future assistants.  
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Question/Information Requested 

(If yes) Please describe negative HMI aspects you would like avoided in future assistants.  

The following shows potential options for visual, aural, and haptic cues. Please comment if you see 
anything missing / incorrect / inadvisable.  

Are there any new HMI technologies/capabilities that you would like to see incorporated into this 
digital assistant?   

Is there anything that can be added to the HMI that would help you to better "trust" the information 
provided by the digital assistant?  
(i.e. what additional in-flight or post-flight information would help provide transparency & contribute 
to pilot trust of the digital assistant?) 

Is there any information about the digital assistant algorithms should be shown alongside 
WCAs/guidance markers (in-flight)? If so, how/where?  
 
(e.g. uncertainty/confidence, algorithms used, number of occurences, time until unstable/stable, 
likelihood/degree of instability, etc) 

Do you feel that an overall "override" feature should be available for the digital assistant system?  

(If yes) Do you have any specific suggestions regarding the design/inclusion of an override feature?  
(e.g. which existing button could be used, how the override could work, etc) 

Please choose the level of visual WCA/alert severity that you think is most appropriate for the 
following situations: [UA likely later (u_long > 90%)] 

Please choose the level of visual WCA/alert severity that you think is most appropriate for the 
following situations: [UA expected soon (u_short > 90%)] 

Please choose the level of visual WCA/alert severity that you think is most appropriate for the 
following situations: [UA detected (u_now > 95%)] 

Please choose the level of visual WCA/alert severity that you think is most appropriate for the 
following situations: [Stability Re-established] 

Please choose the level of visual WCA/alert severity that you think is most appropriate for the 
following situations: [High severity UA Very likely / Detected] 

Please choose the level of visual WCA/alert severity that you think is most appropriate for the 
following situations: ["Other" (Please provide below)] 

"Other" situation/condition - please describe here. 

How much would you expect the following visual cues to help the pilot regain/ensure stability in an 
unstable approach (1 = "not at all / unlikely"):   [WCA "UNSTABLE APP" (or similar)] 

How much would you expect the following visual cues to help the pilot regain/ensure stability in an 
unstable approach (1 = "not at all / unlikely"):   [Static markers on A/C parms] 

How much would you expect the following visual cues to help the pilot regain/ensure stability in an 
unstable approach (1 = "not at all / unlikely"):   [Static markers - runway/nav display] 
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Question/Information Requested 

How much would you expect the following visual cues to help the pilot regain/ensure stability in an 
unstable approach (1 = "not at all / unlikely"):   [Blinking/Flashing markers - A/C parms] 

How much would you expect the following visual cues to help the pilot regain/ensure stability in an 
unstable approach (1 = "not at all / unlikely"):   [Blinking/Flashing symbols - runway/nav display] 

How much would you expect the following visual cues to help the pilot regain/ensure stability in an 
unstable approach (1 = "not at all / unlikely"):   [Highlighted Parameter(s)] 

How much would you expect the following visual cues to help the pilot regain/ensure stability in an 
unstable approach (1 = "not at all / unlikely"):   ["Other" - Please describe below] 

"Other" style of visual cues - Please describe here. 

How much would you expect the following visual cues to increase pilot workload or cause 
confusion/distraction in an unstable approach (1 = "not at all / unlikely"):  [WCA "UNSTABLE APP" (or 
similar)] 

How much would you expect the following visual cues to increase pilot workload or cause 
confusion/distraction in an unstable approach (1 = "not at all / unlikely"):  [Static markers on A/C 
parms] 

How much would you expect the following visual cues to increase pilot workload or cause 
confusion/distraction in an unstable approach (1 = "not at all / unlikely"):  [Static markers - 
runway/nav display] 

How much would you expect the following visual cues to increase pilot workload or cause 
confusion/distraction in an unstable approach (1 = "not at all / unlikely"):  [Blinking/Flashing markers 
- A/C parms] 

How much would you expect the following visual cues to increase pilot workload or cause 
confusion/distraction in an unstable approach (1 = "not at all / unlikely"):  [Blinking/Flashing symbols 
- runway/nav display] 

How much would you expect the following visual cues to increase pilot workload or cause 
confusion/distraction in an unstable approach (1 = "not at all / unlikely"):  [Highlighted Parameter(s)] 

How much would you expect the following visual cues to increase pilot workload or cause 
confusion/distraction in an unstable approach (1 = "not at all / unlikely"):  ["Other" - Please describe 
below] 

"Other" style of visual cues - Please describe here. 

Regarding the persistance of WCAs/symbols displayed for an unstable approach, do you have any 
specific preferences/guidance?     
 
i.e. Should WCA messages disappear automatically if the condition improves? Or should they change 
in some specific manner? Should a Warning overwrite a caution, or should both remain 
"latched"/visible?  

Regarding the display style of WCAs/symbols shown for an unstable approach, do you have any 
specific preferences/guidance for the conditions listed above (e.g. UA likely later, UA likely soon, 
etc)?   
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Question/Information Requested 

Are there particular screens or parameters that should not have any visual cues added to it?  

Do you have any other ideas or suggestions regarding visual cues for this digital assistant?  

How much would you expect the following aural cues to help the pilot regain/ensure stability in an 
approach ( 1 = "not at all / unlikely"):   ["UNSTABLE" (repeated, when detected)  ] 

How much would you expect the following aural cues to help the pilot regain/ensure stability in an 
approach ( 1 = "not at all / unlikely"):   ["UNSTABLE in 30 seconds" (predicted)] 

How much would you expect the following aural cues to help the pilot regain/ensure stability in an 
approach ( 1 = "not at all / unlikely"):   ["STABLE in 10 SECONDS"] 

How much would you expect the following aural cues to help the pilot regain/ensure stability in an 
approach ( 1 = "not at all / unlikely"):   ["UNSTABLE - Airspeed"] 

How much would you expect the following aural cues to help the pilot regain/ensure stability in an 
approach ( 1 = "not at all / unlikely"):   ["Unstable - Airspeed low"] 

How much would you expect the following aural cues to help the pilot regain/ensure stability in an 
approach ( 1 = "not at all / unlikely"):   [STABLE (after UA not detected for ~10 sec)] 

How much would you expect the following aural cues to help the pilot regain/ensure stability in an 
approach ( 1 = "not at all / unlikely"):   [Long tone ] 

How much would you expect the following aural cues to help the pilot regain/ensure stability in an 
approach ( 1 = "not at all / unlikely"):   [Short tone ] 

How much would you expect the following aural cues to help the pilot regain/ensure stability in an 
approach ( 1 = "not at all / unlikely"):   ["Other" - Please describe below.] 

"Other" - Please describe here 

How much would you expect the following aural cues to increase pilot workload or cause 
confusion/distraction in an approach ( 1 = "not at all / unlikely"):   ["UNSTABLE" (repeated, when 
detected)  ] 

How much would you expect the following aural cues to increase pilot workload or cause 
confusion/distraction in an approach ( 1 = "not at all / unlikely"):   ["UNSTABLE in 30 seconds" 
(predicted)] 

How much would you expect the following aural cues to increase pilot workload or cause 
confusion/distraction in an approach ( 1 = "not at all / unlikely"):   ["STABLE in 10 SECONDS"] 

How much would you expect the following aural cues to increase pilot workload or cause 
confusion/distraction in an approach ( 1 = "not at all / unlikely"):   ["UNSTABLE - Airspeed"] 

How much would you expect the following aural cues to increase pilot workload or cause 
confusion/distraction in an approach ( 1 = "not at all / unlikely"):   ["Unstable - Airspeed low"] 

How much would you expect the following aural cues to increase pilot workload or cause 
confusion/distraction in an approach ( 1 = "not at all / unlikely"):   [STABLE (after UA not detected for 
~10 sec)] 
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Question/Information Requested 

How much would you expect the following aural cues to increase pilot workload or cause 
confusion/distraction in an approach ( 1 = "not at all / unlikely"):   [Long tone] 

How much would you expect the following aural cues to increase pilot workload or cause 
confusion/distraction in an approach ( 1 = "not at all / unlikely"):   [Short tone ] 

How much would you expect the following aural cues to increase pilot workload or cause 
confusion/distraction in an approach ( 1 = "not at all / unlikely"):   ["Other" (Please describe below)] 

"Other" aural cues - Please describe here 

Regarding the relative loudness (volume) of aural cues, do you have any specific 
preferences/guidance? 
(e.g. quieter than "engine out"/ louder than radar altitude call-outs) 

Regarding the repetition of aural cues, do you have any specific preferences/guidance? 

Do you have any other ideas or suggestions regarding aural cues for this digital assistant?  

How much would you expect the following haptic cues to help the pilot regain/ensure stability in an 
approach ( 1 = "not at all / unlikely"):   [Yoke/throttle force ] 

How much would you expect the following haptic cues to help the pilot regain/ensure stability in an 
approach ( 1 = "not at all / unlikely"):   [Yoke/throttle vibe/buzz] 

How much would you expect the following haptic cues to help the pilot regain/ensure stability in an 
approach ( 1 = "not at all / unlikely"):   [Seat vibe/buzz] 

How much would you expect the following haptic cues to help the pilot regain/ensure stability in an 
approach ( 1 = "not at all / unlikely"):   [Wearable vibe/buzz] 

How much would you expect the following haptic cues to increase pilot workload or cause 
confusion/distraction in an approach (1 = "not at all / unlikely"):   [Yoke/throttle force ] 

How much would you expect the following haptic cues to increase pilot workload or cause 
confusion/distraction in an approach (1 = "not at all / unlikely"):   [Yoke/throttle vibe/buzz] 

How much would you expect the following haptic cues to increase pilot workload or cause 
confusion/distraction in an approach (1 = "not at all / unlikely"):   [Seat vibe/buzz] 

How much would you expect the following haptic cues to increase pilot workload or cause 
confusion/distraction in an approach (1 = "not at all / unlikely"):   [Wearable vibe/buzz] 

How much would you expect the following haptic cues to increase pilot workload or cause 
confusion/distraction in an approach (1 = "not at all / unlikely"):   ["Other" (Please Describe below)] 

"Other" haptic/tactile cues- Please describe here 

Regarding the relative strength of haptic cues, do you have any specific preferences/guidance? 

Regarding the repetition of haptic cues, do you have any specific preferences/guidance? 

Do you have any other ideas or suggestions regarding haptic/tactile cues for this digital assistant?  
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2. Summary/Key Findings of Results  

General Info: 

5 total responses: 3 from Pegasus; 2 from CAA/CAAi; all have some DA experience 

▪ 3 professional airline pilots (captains, 5000+ hrs) 

▪ 1 commercial transport helicopter pilot (1000-2000 hrs) 

▪ 1 PPL(A) / Flight test engineer (closer to 250 hrs) 

▪ Previous DA experience: 

▪ nearly all know/use SR/SL (Honeywell), EGPWS, RAAS, EFB 

▪ one respondent mentioned synthetic vision trajectory predictors & CLP correction 
cues (for maintaining Nr) 

UA DA HMI Should Include/Be: 

• uncluttered, intuitive, clear, accurate, brief, harmonious with other cockpit announcements 

• inhibit/override capability (e.g. using the EGPWS inhibit button(s)) 

• aural + visual cues (maybe not haptic; mixed results regarding haptic) 

• record of UA DA alerts/cautions/decisions in aircraft "quick access" (or similar post-flight) 
recorders; ability to replay the situation later, including UA DA aspects 

• easily-explainable to pilots in ground school 

Visual Alert Preferences: 

• Avoid visual clutter & distractions: 

o No additional info (e.g. algorithm used, uncertainty/confidence, etc) 

o Limit UA DA info to the PFD (except for UA DA system failure/inhibit information) 

o Brief text in WCA message (including text related to parm(s) triggering UA alert may 
be ok - should be tested) 

o UA DA system failure or inhibit would be best shown on the ECAM 

• Avoid unclear coloring (i.e. avoid anything requiring "interpretation"/non-standard) 

o Colors/alerts should follow Honeywell HMI & related norms (e.g. Warnings: Red; 
Cautions: Amber; Advisories: Green; Information: Cyan/Blue) 

• WCAs start with "expected" UA condition: 

o UA likely later (with >90% certainty): mixed results: 3 say "Caution"; 2 say "Advisory" 

o UA expected soon (with >90% certainty): "Caution" (all) 

o High severity UA very likely (or detected) → Warning (all) 

o UA detected (> 95% certainty UA condition=true) → Warning (all) 

o Stability regained (UA = false, with >95% certainty) → Advisory (all) 

▪ One option for showing this is to re-color the "UNSTABLE" WCA as cyan / blue 
→ indicating transition out/regaining stability 

• Indicating triggering parameter(s) directly would be useful (should be tested): Highlighting / 
drawing a box / changing color (need to test to see which is most effective) 

• Persistence: some disagreement here; may depend on the user/pilot preferences 
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o Option A: Display 2 consecutive WCAs on PFD for transition to UA; 1 for regaining 
stability:  

▪ UA Expected 

▪ UA detected 

▪ Stable APP  (flash twice, in cyan/blue) 

o Option B: WCA persists until Unstable expected/detected = false, then briefly re-color 
or replace with Information message indicating stability achieved 

o Option C: WCA persists until Unstable expected/detected = false, simply no message 
when stability regained  

• Avoid unnecessary repetition: 

o Only show one UA DA message at a time 

o Warnings replace cautions; cautions replace advisories, etc (of same type)  

Aural Alert Preferences 

• Aural cues are expected to be very useful if correctly implemented: 

o Minimize length of message 

o Integrate properly with other messages (from other systems) 

o Muting feature available 

• Aural Message Wording:  

o Favorite overall (for each parameter): "Unstable - Airspeed Low" or "Unstable - 
Airspeed" → should test 

o Mixed-results, but worth testing: 

▪ Announcing UA timing (e.g. "Unstable in 30 sec" / "Unstable in 10 sec")   

▪ Pegasus → high approval 

▪ others → very low approval 

▪ Announcing return to stability (e.g. "Stable")  

▪ Short tones 

▪ Giving "Go Around" direction 

o Things to avoid: 

• Loudness/volume levels: Follow Windshear / TAWS styles  

o Warning → louder, like "Terrain - Pull Up" 

o Caution → slightly quieter 

• Repetition: several ideas here 

o a) Warning → 2x in 5 sec intervals, repeating until untrue; Caution → 2x in 10 sec 
intervals, repeating until untrue 

o b) same as "a" except only 2 repetitions; then stop aural messages 

o c) only repeat Warning 

Haptic Cue Preferences 

• Haptic cues deemed undesirable for this digital assistant (by survey respondents) 
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• One survey participant suggested trying pedal kick/buzzes (like ABS brakes / anti-shimmying 
systems) → should test 

• Boeing HF expert suggests stick forces → should test   
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Appendix C Tabular Task Analysis 
 



 

SafeTeam: Safe Human-digital assistant Teaming in the advent of higher levels of automation in aviation 

 

Table 22: Complete Tabular Task Analysis 

Task Subtask Task type New task or 
affected by 

new task  

Task 
affected 

by 

Task 
affects 

Risks Design 
requirements 

Comment 

3.1 Monitoring 
aircraft states 

3.1.1 Monitor 
speed 

Acquisition, 
Analysis 

Affected 1.2, 1.1 5.2.2, 2, 
1, 5.2.1, 
3.2 

Complacency of Pilot Monitoring, 

Too strict UA limits will lead to 
nuisance alerts, 

Too strict UA limits will lead to 
unnecessary GA, 

Recurring pilot 
training 

Appropriate 
setting of alert 
limits 

No new or 
affected 
tasks 

 
3.1.2 Monitor 
track 

Acquisition, 
Analysis 

Affected 1.2, 1.1 5.2.2, 2, 
1, 5.2.1, 
3.2 

Complacency of Pilot Monitoring 

Too strict UA limits will lead to 
nuisance alerts, 

Too strict UA limits will lead to 
unnecessary GA, 

Recurring pilot 
training 

Appropriate 
setting of alert 
limits 

 

 
3.1.3 Monitor 
vertical track 

Acquisition, 
Analysis 

Affected 1.2, 1.1 5.2.2, 2, 
1, 5.2.1, 
3.2 

Complacency of Pilot Monitoring 

Too strict UA limits will lead to 
nuisance alerts, 

Too strict UA limits will lead to 
unnecessary GA, 

Recurring pilot 
training 

Appropriate 
setting of alert 
limits 

 

3.2 Controlling 
the aircraft 

3.2.1 Control 
speed 

Action 
 

3.1 
    

 
3.2.2 Control 
track 

Action 
 

3.1 
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3.2.3 Control 
vertical track 

Action 
 

3.1 
    

3.3 Configuring 
aircraft 

3.3.1 Command 
Flaps 

Action 
 

3.1 
    

 
3.3.2 Command 
Gear 

Action 
 

3.1 
    

 
3.3.3 Set Flaps Action 

 
3.1 

    

 
3.3.4 Set Gear Action 

 
3.1 

    

4.1 
Intercepting 
and follow ILS 

 
Action 

      

4.2 Monitor 
 

Analysis, 
Acquisition 

      

5.1 ATC 5.1.1 Issue 
landing 
clearance 

Analysis, 
Action 

      

 
5.1.2 Provide 
additional 
information (e.g. 
weather) 

Analysis, 
Action 

      

5.2 Intra-
Cockpit 

5.2.1 Announce 
plan to other 
pilot 

Action Affected 1, 4, 6 
 

Complacency of Pilot Monitoring 

Misleading, unclear 
communication 

Training 

Use of standard 
terminology 
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5.2.2 Announce 
deviations 

Action Affected 3.1 
 

Complacency of Pilot Monitoring 

Too strict UA limits will lead to 
nuisance alerts, 

Too strict UA limits will lead to 
unnecessary GA, 

Training 

Use of standard 
terminology 

 

5.3 Cabin 
coordination 

 
Action 

 
1.1 

    

6.1 Checklist 
 

Action 
 

1.1 
    

6.2 Briefing 
 

Action 
 

1.1 
    

6.3 FMS 
 

Action 
 

1.1 
    

6.4 
Light/Brakes 

 
Action 

 
1.1 

    

1.1 Prudence 
 

Analysis Affected 1.2, 3 
 

Complacency Training 
 

1.2 Predict UA 
 

Analysis New 3.2, 7, 
6.3, 3.3, 
3.2 

3.2, 5.2, 
3.1, 2, 
3.3, 6.3 

False predictions 

False positive - unnecessary GA 
→ introduces another risk 

False negative - suggests a stable 
approach even though it might 
be(come) unstable, situation 
perceived as safe even though 
there is an inherent risk 

  

1.3 Data 
Gathering 

 
Acquisition New 

     





 

SafeTeam: Safe Human-digital assistant Teaming in the advent of higher levels of automation in aviation 
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